Federal Aviation Administration

Safer Skies: Focused Safety Agenda

General Aviation

Weather Joint Safety Implementation Team

Final Report

March 1, 2000

Table of Contents

Section	Page
Executive Summary	4
GA Weather JSIT Organizations and Representatives	12
I. Introduction	13
A. Problem Statement	13
B. Solution	13
C. Goal and Objective	14
D. Background	
 Safer Skies: A Focused Safety Agenda GA Weather JSAT 	14 15
3. GA Weather JSIT	15
	10
II. Scope and Method	16
A. Scope	16
B. Method	16
1. Implementation Plans	16
2. Implementation Plan Summaries	16
3. Evaluations	17 18
4. Creation of Implementation Programs	10
III. Recommended Implementation Programs	19
A. JSAT Recommendation 1. Better Weather Information	19
1. JSAT Intervention 3-1	20
Program 1. Graphic Weather Forecasts	20
Program 2. Operational Approval and Guidance	22
Program 3. GA Automatic Weather Data Downlink	
2. JSAT Intervention 3-2	25
Program 4. Improve PIREP System 3. JSAT Intervention 2-1	25 27
Program 5. Improve Avionics Certification	27
4. JSAT Intervention 3-3	28
Program 6. Expedite Implementation of FIS Syste	
5. JSAT Intervention 4-1	31
Program 7. ATC Weather Information	31
6. JSAT Intervention 1-3	33
Program 8. Model Flight Operations Manual	33
7. JSAT Intervention 3-4	35
Program 9. Improve FSS Specialist Training	35
Program 10. Improve FSS Equipment B. JSAT Recommendation 2. Decision Training for Weathe	38 er 40
1. JSAT Recommendation 2. Decision fraining for weather	40 40
Program 11. Scenario-Based Training and Tes	
C. JSAT Recommendation 3. Mountain, Low-Altitude Opera	5
1. JSAT Intervention 5-1d and e	42

	Program 12. Weather Information Sources	42
	Program 13. Weather Sensors in Mountain	44
	2. JSAT Intervention 5-2 a and b	45
	Program 14. Use Private-Sector Communications	45
	Program 15. Lower Minimum En Route Altitude	46
	3. JSAT Intervention 7-4	48
	Program 16. Improve Low-Altitude Procedures	48
	4. JSAT Intervention 6-1	50
	Program 17. Encourage Hazardous Weather Reports	50
	D. JSAT Recommendation 4. New Technology	52
	1. JSAT Intervention 2-3	52
	Program 18. Synthetic Vision	52
	E. JSAT Recommendation 5. Mitigate Regulatory Impediments	54
	1. JSAT Intervention 6-2	54
	Program 19. Definition of VNR and Icing	54
	2. JSAT Intervention 2-2	56
	Program 20. Standby Attitude Indicator	56
	F. JSAT Conclusion K. Deficient GA Accident Data	57
	. JSAT Interventions Not Recommended Conclusions	58 59
	Appendices	
Α.	Acronym Glossary	63
	Definitions	70
	JSIT Charter	72
	Annual Government/Industry Resource Requirements	73
	Intervention Implementation Projects and Working Groups	78
	Cross-Reference of JSIT Programs with FSS GA Summit	81
	Recommendations	-
G.	Implementation Plan Summaries (Sample attached: Complete IP	85
	Summaries available on: www.flash.net/~okc122/IPDraft.doc)	
Н.	Implementation Plans (Sample attached: Complete IPs are	88
	available on: www.nbaa.org/wxjsit/IPSummaries.doc.)	
I.		97
	JSIT Team Members and Statement of Consensus	98

Executive Summary

The Safer Skies Focused Safety Agenda (Safer Skies) was launched in April 1998 in response to a White House initiative. In response to the National safety goal for accident reduction, the General Aviation (GA) Industry and the FAA developed a goal of 363 fewer fatal GA accidents over the 8-year period from 2000 to 2007. The GA goal assumes an annual growth in GA activity of 1.6% per year. If GA activity exceeds the assumed growth rate, the goal should be reviewed in light of the actual activity increases. In addition, the goal assumes that the programs recommended will be implemented as described in this Final Report and the supporting appendices, including the timing and resource commitments provided.

The GA Industry began working with the FAA on Safer Skies in early 1998. This collaborative effort identified the major causes of GA fatal accidents and then chartered two teams to address the top-priority causes: controlled flight into terrain (CFIT) and weather. Inadequate weather decision making accounts for one-quarter to one-third of the accidents. To meet the GA Safer Skies goal, weather-related accidents must be reduced substantially.

In April 1999, the GA Weather Joint Safety Analysis Team (JSAT) (with 15 FAA and five Industry members) reached consensus and issued its Final Report, identifying the "root causes" of fatal GA weather accidents and recommending prioritized "interventions" to mitigate them. The JSAT Report was approved by the Joint Steering Committee (JSC), of FAA, NASA and GA Industry members.

The GA Weather Joint Safety Implementation Team (JSIT) was chartered to recommend cost-effective programs to address the interventions of the JSAT Final Report. This JSIT Report is the consensus product of an intensive two-year, datadriven effort involving 25 FAA, NASA, and National Weather Service (NWS) offices, represented by 30 individuals, and six GA Industry associations. The JSIT recommends the accomplishment of specified Government/Industry programs to accomplish **three principal system improvements**.

- Provide more accurate and precise graphical depictions of the location of weather hazard areas, through improved weather forecasts, pilot weather reports, and weather observations. Effectively deliver this information to pilots on the ground and in the air, to controllers, FSS specialists, and dispatchers.
- 2. Provide scenario-based weather training and testing, and improve guidance and operations materials on weather decision making.
- 3. Minimize regulatory impediments to proper weather decision making and weather hazard reporting by pilots.

JSIT Program Recommendations

The JSIT recommends implementation programs that address 16 of the 20 JSAT interventions. Implementation programs are not recommended for four of the JSAT interventions. The potential safety benefits of these four interventions may fall outside the scope of weather-related accidents, or the interventions may be considered later when the advancement of technology enables a more favorable cost/benefit ratio or a quicker reduction in fatal accidents.

The JSIT endorses the conclusions listed in the JSAT Final Report, particularly Conclusion K, which recognizes the deficiencies in GA accident data.

Each of the programs that the JSIT recommends is listed beneath the JSAT Recommendations that it supports. All 20 programs involve FAA action and 16 involve Industry action as well. The JSIT recommends 21 Implementation Programs, prioritized according to the JSAT Final Report. Of the 20 Programs, 12 (all of the JSAT Recommendation 1 items) are listed as priority items in the National Aviation Weather Initiatives report, issued by the FAA, NASA, NWS, NTSB, and DOD in February 1999.

JSAT Recommendation 1. Provide better information to pilots on the location and severity of weather hazard areas, and better methods of using weather information to make safe decisions on how and when to make a flight.

Supporting JSIT Programs:

- JSIT Program 1: Modify NWS programs to expand and accelerate the production of operational, accurate and precise new weather forecast graphics showing the location of weather hazard areas.
- JSIT Program 2: Continue the program to provide operational approvals for these products.
- JSIT Program 3: Modify the program for automatic downlink of weather data from aircraft to include high utilization, low-altitude GA operators.
- JSIT Program 4: Improve the collection, data basing, and dissemination of pilot weather reports (PIREPs)
- JSIT Program 5: Continue the RTCA Select Committee evaluating the March 1999 Certification Task Force recommendations for avionics certification improvements, and implement its recommendations expeditiously.
- JSIT Program 6: Continue the implementation of the FIS weather data link system.
- JSIT Program 7: Improve the weather information available to controllers, including access to the new weather forecast graphics, and enhance pilot/controller communication procedures to improve GA aircraft weather avoidance.
- JSIT Program 8: Develop a new model flight information manual for use by GA pilots for assessing weather risks and avoiding or coping with weather hazards.

• JSIT Programs 9 and 10: Improve the Automated Flight Service Station (AFSS) system through better FSS specialist training and access to new equipment and advanced weather graphics; implement the recommendations of the November 1999 FAA "GA Summit" on Flight Services.

JSAT Recommendation 2. Provide new weather training materials and programs to disseminate them.

Supporting JSIT Program:

• JSIT Program 11: Develop scenario-based weather decision training and testing for pilots and instructors.

JSAT Recommendation 3. Develop new mountain and low altitude airspace communications, navigation and surveillance (CNS) infrastructure, procedures, and information of hazardous weather.

Supporting JSIT Programs:

- JSIT Program 12: Provide guidance on mountain weather information and procedures.
- JSIT Program 13: Install new weather sensors in heavily used mountain passes.
- JSIT Program 14: Explore the use of private-sector communications systems for ATC in mountainous areas.
- JSIT Programs 15 and 16: Provide lower minimum en route altitudes using GPS-defined routes to reduce exposure to icing conditions, and expedite implementation of GPS approaches into smaller airports and heliports.

JSAT Recommendation 4. Improve technology for rotorcraft and small airplane weather operations.

Supporting JSIT Program:

• JSIT Program 18: Accelerating NASA's synthetic vision program, which uses GPS and a terrain data base to provide pilots a depiction of nearby terrain on a cockpit display.

JSAT Recommendation 5. Remove regulatory impediments to weather safety, improve certification processes, and implement services to encourage voluntary installation of aircraft systems to make small aircraft more weather tolerant.

Supporting JSIT Programs:

 JSIT Program 17: Encourage pilots to file more PIREPs of weather hazards by overcoming their fear of enforcement through better pilot education; and encourage installation of automatic electronic weather data reporting equipment by adopting a policy that precludes their use in enforcement. [Note: This program was moved from Recommendation 3.]

- JSIT Program 19: Revise the use of "VFR-Not-Recommended" and the definition of "icing" in pilot weather briefings to effectively warn pilots of unsafe conditions.
- JSIT Program 20: Continue the FAA program to evaluate the use of a standby attitude indicator in lieu of a rate-of-turn indicator as a back-up flight instrument.
- **JSAT Conclusion K**: Accident report data deficiencies were identified by the JSAT and the JSIT. The FAA and NTSB should develop methods of improving the collection and analysis of GA accident data, for all types of GA accidents.

Principal Changes from Current Programs

FAA

- Accelerate the operational use of new graphical weather forecasts for use by pilots (pre-flight via computer and in-flight via data link), controllers, dispatchers, and FSS specialists.
- Provide additional controller training and equipment for improved collection and dissemination of PIREPs, and for use of new weather-hazard, forecast graphics.
- Provide additional FSS specialist training for enhanced weather avoidance guidance to pilots, coupled with access to new weather forecast graphics and new equipment to display weather and aircraft positions.
- Develop scenario-based weather decision training and testing for pilots.
- Create new mountain and low-altitude operation programs to provide better mountain-pass weather observations, communications in remote areas, guidance on mountain-flying methods, and additional GPS-defined routes.

NWS

- Produce new operational weather forecast graphics, including improvements in the system for creating and evaluating new forecasts.
- Support FAA in FSS specialist training improvements.

Pilot/operator organizations (AOPA, EAA, HAI, NBAA, NATA)

- Publicize new FAA weather programs.
- Publish articles to educate pilots on pilot/controller communications, new training programs, actual use of PIREPs in enforcement actions, etc.

Training Organizations (AOPA ASF, EAA NAFI)

• Develop and conduct training seminars based on new weather products, new FSS services, new ATC capabilities, and new pilot/controller communications, and new scenario-based weather decision making.

Manufacturing Organizations (GAMA, SAMA) and Manufacturers

- Develop, certify, and produce avionics for weather data link and display, and synthetic-vision systems.
- Develop, install, operate and maintain the weather data-link system.

Note: The **NASA Aviation Safety Program** contributes significantly to the Safer Skies goal. While the JSIT has recommended no changes in the NASA programs, it does recommend the continuation of these programs as currently planned and budgeted.

Additional Resource Requirements

For the six-year period FY2000 to FY2005, the implementation programs summarized in this report estimate total resources required. For FY2000 and FY2001, the JSIT determined the required additional full time equivalent employees (FTEs) and additional contract dollars (all expenses other than FAA staff) over the amounts planned and budgeted as of October 1, 1999. The JSIT recognizes that finding the resources to implement these programs will not be easy, and may require offsets in other programs.

The JSIT believes that the additional resource requirements in FY2000 and FY2001 (i.e., over the planned and budgeted amounts) best describe the budgetary impact of the changes necessary to achieve the Safer Skies goal. Most of the additional Government resources needed are from the FAA. The weather forecast program cost of JSAT Recommendation 1 should be shared between the FAA and NWS. Limited additional funding is recommended from NASA. Most GA Industry resources are from weather data-link service providers and avionics manufacturers, and pilots/operators who purchase avionics.

Additional FAA Resource Requirements in FY2000 and FY2001

JSAT Recommendation 1. Improve information on weather-hazard areas. Programs 1 - 10

Four of the 10 supporting programs involve no additional FTEs or contract dollars in FY2000, and six of the 10 programs involve no additional resources in FY2001. However, these programs do require a continuation of current programs at budgeted levels.

FY2000

- Additional resources will be required to provide better training and equipment to
 FSS personnel in all of the Automated Flight Service Stations. These resources
 will be determined through a review of available staffing at each AFSS. These
 resources are necessary for expert weather interpretation for low-time pilots and
 pilots flying in areas unfamiliar to them.
- Another significant resource increase (which should be shared between the FAA and NWS) is for improved weather forecasts, which requires an additional 6 FTEs and \$1.5M in contract dollars.
- The other programs requiring additional funds in FY2000 are PIREP system and ATC procedure improvements, which combined will cost an additional 4 FTEs and \$0.53M contract dollars.

FY2001

- The FSS system improvements require additional FTEs,. Increased staffing requirements are for continuing training and are needed for the remainder of the program period, through 2005.
- Improved weather forecasts require the most significant additional contract dollars, \$6.5M, and 6 additional FTEs are necessary. Through 2005, the additional FTEs and contract dollars required for this item continue at or below this level.
- Improved PIREPs require an additional 3.5 FTEs and \$0.53M contract dollars.

JSAT Recommendation 2. Improve weather decision-making training and testing. Program 11

FY2000: No additional FTEs; additional \$0.75M contract dollars. (Note: This is the amount that was planned for weather training in FY2000, but was transferred to general salary accounts).

FY2001: No additional FTEs; additional \$1.3M contract dollars.

JSAT Recommendation 3. Improve mountain and low-altitude flying capabilities. Programs 12 – 16

FY2000: Additional 25 FTEs and \$5.1M contract dollars. This recommendation requires this level of additional resources because little is being done to address mountain and low-altitude weather accidents. Low-altitude airplane and rotorcraft operations (e.g., offshore oil, Alaska) have always been a lower priority than other operations, and generally have not been addressed. However, they support important commercial general aviation applications and should be addressed at the recommended levels.

FY2001: Additional 16.5 FTEs and \$3.4M contract dollars. The resource requirements are less than in FY2000 because some tasks should be completed in the first year's effort.

JSAT Recommendation 4. Improve synthetic-vision technology. Program 18

FY2000: No additional FTEs; additional \$0.15M contract dollars. FY2001: Additional 1 FTE and \$0.3M contract dollars.

JSAT Recommendation 5. Mitigate regulatory impediments. Programs 17, 19, 20

FY2000: Additional 1.5 FTEs and \$0.1M contract dollars. This recommendation would have the most immediate impact on accidents because it would be fully implemented in FY2000.

FY2001: Additional 1 FTE; no additional contract dollars.

GA Industry Resources: FY2000 and FY2001

Flight Information Services Data-Link System (FISDL) Providers.

• Installation, operation/maintenance of the weather data-link system: \$22M.

Avionics Companies: FISDL equipment.

• FISDL avionics development and certification: \$16M.

Pilot and Operator Organizations: training and education.

- Four articles each in seven national GA magazines: \$0.42M
- 2 organizations will each provide one set of weather seminars covering new weather safety programs: \$0.83M.

Aircraft Owners, Operators, and Pilots: avionics purchases.

• Voluntary, benefits-driven avionics purchases for weather data link and GPS routes and approaches: \$28M.

Conclusions

Interdependence of Recommendations. Many of the recommended programs are interdependent. Their effectiveness depends on the extent to which the various elements of these programs, and other closely related programs, are implemented. The implementation of any of these programs would reduce the probability of fatal GA weather accidents. However, the combined implementation of many of the recommended programs greatly increases their effectiveness. The combined effect of the recommended programs is estimated to achieve the Safer Skies goal because the programs address all major accident root causes.

Matching Specific Programs to Accident Reduction Statistics. Numerical reductions in fatal GA weather accidents can not be matched to each JSIT program recommendation due to program interdependence, differences between NTSB accident categories and JSAT root cause categories, and multiple root causes of accidents addressed by JSIT programs.

Dual Effect of Communications: Safety and Enforcement/Liability.

Communications between pilots and controllers or weather briefers may have both safety and enforcement or liability impacts; the balance must be shifted toward safety improvement. Improvements must be made in the use of the "VFR Not Recommended" statement in weather briefings. Additionally, improve pilots' understanding of the relationship between PIREPs, emergency declarations, refusal of ATC clearances, and enforcement proceedings.

Endorsement of JSAT Conclusions. The JSIT reviewed and endorses each of the conclusions reached by the JSAT:

- A. The FAA weather information and dissemination system must undergo fundamental changes to better support the flight planning needs of GA pilots.
- B. Intuitive graphical depictions of weather hazard areas made available directly to pilots are the most effective form of decision support for most weather hazards.
- C. Many of the JSAT Recommendations have been included in previous studies.
- D. Interventions must be implemented as high priority in order to achieve the goals of the Safer Skies Agenda.
- E. ASRS information should be used in developing and assessing the effectiveness of interventions.
- F. Significant reduction in fatal accidents requires an implementation process with accountability elements.
- G. Producing more stringent rules related to weather will not increase safety.
- H. Currently required pilot training hours are adequate.
- I. The Root Cause Analysis process revealed that descriptors (e.g., "get-homeitus", and "get-there-itus", "pilot error") are not sufficient to determine the underlying causes of the weather accidents.
- J. JSAT lessons learned (contained in Appendix J of the JSAT Report).
- K. Accident report data deficiencies (addressed in Program 21).

JSIT Member Organizations and Representatives Statement of JSIT Consensus

The representatives of the organizations listed below have reached consensus that the recommendations of the General Aviation Weather Joint Safety Implementation Team (JSIT) contained in this report are highly effective and feasible, will provide substantial safety benefits compared to the cost of implementation, and are appropriate responses to the recommended interventions of the GA Weather Joint Safety Analysis Team.

Member Organization	Representative(s)
Federal Aviation Administration (FAA)	
Regulations and Certification	
Flight Standards Service	Sue Gardner, Ruth Grasel, Hooper
(AFS 800, AFS 400, AFS 600)	Harris, Bob Kopecky
Aircraft Certification Service	Henry Armstrong, Kevin Bridges, Jim
(Rotorcraft Directorate, AIR-130, ANC ACO)	Chudy
Office of Aviation Medicine (CAMI)	Kurt Joseph
Office of Accident Investigation	Joe Mooney
Air Traffic	
Flight Services	Monica Bradford, Lynda Hobbs,
(ATP 300)	Daphne Jefferson
Aviation Weather	Fred Gibbs, FAA Chair; Dr. Frances
(ARW 2, ARW 100, ARW 200)	Sherertz, FAA Chair; Steve Chenault,
	Richard Young
Spectrum Management	Don Nellis
Research and Acquisition	
Research	George Greene
Aviation Weather Research (AUA 430)	Dave Sankey, Jim Sheets
Communications, Navigation, Surveillance	Pete Hwoschinsky, Steve Fisher,
	Stephen Teager
Office of Chief Counsel	James Tegtmeier
System Safety	Mike Lenz
National Weather Service (NWS)	
Aviation Weather Program	Dorothy Haldeman
Aviation Weather Center	Jim Henderson
	Jini henderson
National Aeronautics and Space Administration (NAS	SA)
Aviation Safety Program	Ron Colantonio
FAA Employee Unions	
National Air Traffic Controllers Association (NATCA)	Calvin Smith
National Association of Air Traffic Specialists (NAATS)	Walter Pike, Dan Petlowany
	· · · · · · · ·
GA Industry	1
Aircraft Owners and Pilots Association (AOPA)	Bruce Landsberg, John Steurenagle
Experimental Aircraft Association (EAA)	Richard Weiss
Helicopter Association International (HAI)	Glen Rizner
National Air Transport Association (NATA)	Ric Peri
National Business Aviation Association (NBAA)	Doug Carr
Small Aircraft Manufacturers Association (SAMA)	Paul Fiduccia, Industry Chair

A. Introduction

A. Problem Statement

In order to lower the fatal accident rate in aviation, it is critical to address the causes of accidents involving General Aviation (GA), which comprise more than 90% of the aircraft in the United States. Inadequate pilot decision making regarding weather is a major cause of GA accidents, and over 80% of weather-related accidents are fatal. The societal cost of the approximately 200 annual fatalities in GA weather accidents is over \$500 million¹.

B. Solution: Fatal Weather Accident Reduction

In response to the National goal for accident reduction, the GA Industry and FAA have agreed on an aggressive goal of reducing the number of fatal GA accidents during the years 2000 to 2007, as set forth below². This goal is stated in terms of absolute fatal accident numbers rather than fatal accident rates because of difficulties in determining GA utilization rates. The projected fatal accidents and annual goal are based on an assumed annual growth in GA activity of 1.6% per year.

YEAR	PROJECTED FATAL ACCIDENTS Without interventions	ANNUAL GOAL with Safer Skies interventions
2000	391	379
2001	397	379
2002	404	379
2003	410	374
2004	417	368
2005	424	362
2006	430	356
2007	437	350
8-year Total	3310	2947

Annual General Aviation Performance Targets

Projected Savings through Safer Skies Interventions:

Lives - The goal provides a reduction of 363 fatal accidents over the eight-year period as a result of Safer Skies programs. At an average of 1.8 fatalities per fatal accident, this equates to a reduction in 653 fatalities over that eight-year period.

¹ Id.

² General Aviation Long Term Goal, Safer Skies Program.

Dollars - The FAA has set the current economic loss due to one aviation fatality at \$2.7 Million, or almost \$5 Million per GA accident (not including hull loss, costs of accident investigation, etc.) Achieving the goal of the Safer Skies Interventions would result in economic savings of \$1.8 Billion over eight years.

C. Goal and Objective

Goal: Contribute significantly (30%) to the GA Safer Skies fatal accident reduction goal by reducing GA fatal weather accidents by 110 over the eight-year period between 2000 - 2007. The 30% goal is based on the approximate ratio of fatal weather accidents to total fatal accidents in GA in a typical year.³ If the actual increase in GA activity exceeds the assumed 1.6% per year growth rate, the accident reduction goal should be reviewed in light of activity increases. It is likely that GA activity will increase due to the programs recommended in this Report.

Objective: Produce a set of implementation programs that together would achieve the 30% fatal-accident reduction goal in a cost-effective manner, while maintaining or improving the capacity, utility, efficiency, and affordability of GA operations.

D. Background

1. Safer Skies: A Focused Safety Agenda

The goal of the Safer Skies initiative is to significantly reduce fatal accident rates in civil aviation. In early 1998, the GA Industry and FAA worked together to identify the leading causes of fatal GA accidents. After reviewing National Transportation Safety Board (NTSB) statistics, six major categories were identified for intensive analysis. Weather accidents were identified as one of the leading causes of GA fatalities, and were recognized as an obvious area for improvement. Data indicate that between one-quarter and one-third of fatal GA accidents are weather-related.⁴

The Joint Steering Committee (JSC), comprised of the members of the GA Coalition (GAC), FAA and NASA, was formed to oversee the GA portion of the Safer Skies initiative. The JSC adopted the Joint Safety Analysis Team (JSAT)/Joint Safety Implementation Team (JSIT) process, which is a two-step, data-driven approach to reducing accidents. First, a team of FAA and Industry participants (i.e., a JSAT) was chartered to analyze accident reports, identify the root causes of accidents, and develop prioritized interventions to prevent accidents resulting from these causes. Second, another Government and Industry team (i.e., a JSIT) developed and evaluated detailed implementation plans for the interventions.

The process resulted in a prioritized list of programs that must be undertaken by both Government and Industry to achieve the FAA's Safer Skies fatal-accident reduction goal in the most cost-effective manner.

2. GA Weather JSAT

³ AOPA Air Safety Foundation, Nall Report 1998, p. 8.

⁴ Safety Review, General Aviation Weather Accidents, AOPA ASF, 1996.

The JSC chartered the GA Weather Joint Safety Analysis Team (JSAT) to analyze the root causes of fatal, GA weather accidents and recommend interventions that could be implemented together by the Government and GA Industry.

The JSAT was composed of 20 FAA and GA Industry members selected for their organizational affiliation, operational experience, and technical expertise. The JSAT reviewed all 151 fatal, GA weather accidents that occurred in 1995. Twenty-two accidents were selected for "root cause" analysis because they were representative of all GA weather accidents and had sufficient accident report data to perform a thorough analysis.

The JSAT issued its Final Report in April 1999. This report contained a total of 20 interventions and recommended five intervention strategies, which are listed in order of priority in Section III⁵. The GA Weather JSAT Final Report in Appendix I provides a description of the interventions associated with each intervention strategy.

3. GA Weather JSIT

The JSC chartered the GA Weather JSIT to develop programs that could be used to implement the JSAT interventions. The GA Weather JSIT Charter is in Appendix C. The JSIT was composed of 36 members selected both for their affiliation with the organizations that would be responsible for implementing the JSAT interventions, and their technical expertise with these interventions. The JSIT members, who are listed at the front of this report, include management and technical staff from the following entities:

- FAA, NWS and NASA
- NATCA and NAATS
- AOPA, EAA, HAI, NATA, NBAA, and SAMA

The GA Weather JSIT Final Report is the result of an intense, five-month effort, involving from one-quarter to all of the time of team members during this period.

⁵ GA Weather JSAT Report, Executive Summary.

II. Scope and Method

A. Scope

The scope of JSIT activity was based on the interventions recommended by the GA Weather JSAT. Some of the GA Weather JSAT and GA CFIT JSAT interventions were similar, so responsibility for these interventions was assigned to either the GA Weather JSIT or GA CFIT JSIT. The table in Appendix E shows the GA Weather JSAT and GA CFIT JSAT interventions that were assigned to the GA Weather JSIT.

B. Method

1. Implementation Plans

The JSIT organized the JSAT interventions into 23 different "projects." Projects were assigned to work groups consisting of Government and Industry organizations. Assignments were based on expertise in the area of the intervention, and work groups authored at least one implementation plan (IP) for each project. Each IP is numbered according to the nomenclature used in the JSAT Report (e.g., 3-1a or 4-1c, etc.). Appendix E provides a list of JSIT projects, along with the respective work groups responsible for each IP.

The programs recommended in this report are based on the IPs contained in Appendix H. Each IP contains three major sections:

- Section I contains a description of current programs that relate to a JSAT intervention. This description was used to determine if the current program would adequately address an intervention. In some cases, the JSIT recommended simply to continue the current program, with the same deliverables, milestones, schedule and budget.
- Section II contains the details of necessary program modifications, where the current program does not adequately address the JSAT intervention, and includes additional deliverables and required resources, revised milestones, and/or accelerated schedules.
- Section III contains the details of new programs required, including milestones, schedules, and resource requirements.

The IP also provides the following information:

- Program effectiveness and feasibility
- Current programs relative to particular JSAT interventions
- Program performance goals and indicators
- Plan and execution requirements
- Program risks and risk mitigation

The IPs were used by respective JSIT work groups to make recommendations to the JSIT. The IPs also were used by the JSIT to review a respective work group's recommendation. The IPs provide detailed directions that will guide the

FAA, NWS, NASA, and Industry groups as they implement JSIT recommendations that are designed to achieve the Safer Skies accident-reduction goal. Of course, these recommendations must first be accepted by the JSC, and by FAA, NWS, NASA, and Industry management.

2. Implementation Plan Summaries

Respective JSIT work groups also prepared an Implementation Plan Summary (IPS) to provide a concise summary of the information needed by the JSIT to decide whether a particular IP should be recommended as a program in this Report, and if the IP should be modified from the version recommended by the work group. The IPSs, included in Appendix G, consist of:

- A JSAT intervention summary that describes the intervention using exact language from the GA Weather JSAT Final Report, and provides an explanation of the intervention
- A JSIT implementation summary that recommends actions by specific parties (e.g., Government, Industry), and defines the resource requirements associated with an IP

3. Evaluation

The evaluation of each IPS by the JSIT considered:

- The effectiveness of the IP in reducing fatal, GA weather accidents, compared to the cost
- The technical feasibility of the IP.
- Whether another IP would address the same problem at a lower cost or with less technical risk
- Whether the IP would be effective in reducing accidents before the end of the Safer Skies initiative (i.e., 2007)
- Various options for implementing IPs, with the most cost-effective selected
- Voluntary, benefits-driven equipage was assumed in assessing effectiveness.

The IPs recommended for implementation in this Report are a consequence of the JSIT evaluation. The JSIT voted on each work group recommendation, and revised the IPS as necessary to achieve JSIT consensus. The evaluation also identified several IPs that presently could not be recommended by the JSIT because of the above considerations.

4. Creation of Implementation Programs

After recommending IPs for implementation, the JSIT grouped related IPs into single implementation programs for ease of understanding. Section III lists these programs, using the priority order established by the JSAT Final Report.

The two terms in the resource tables at the end of each program are defined as follows:

- "Contract \$" means contract dollars, i.e., any payments to contractors for support services, to vendors for equipment, and all other expenses other than FAA employee costs.
- "X + Y" means: "X" dollars or FTEs are already contained in the FY2000 or FY2001 budget plans of the agency as of 10/1/99, and "Y" dollars or FTEs would be required in addition to the budgeted amounts in order to accomplish the implementation program. For the years FY2002 – FY2005, the number represents the total contract dollar or FTE requirements to perform the required action.

Appendix D summarizes the resources required for the implementation programs, both by fiscal year, and by Government agency and Industry sector. This summary includes any reprogramming necessary in FY2000 and 2001.

The implementation programs listed in Section III provide an overview of the actions recommended by the JSIT. The reader is strongly encouraged to examine the IPSs in Appendix G because they provide a comprehensive description of each program and serve as the basis for the JSIT recommendations. The reader is also encouraged to examine the IPs in Appendix H because they provide the analysis of existing programs that the JSIT has recommended continuing and the details of the program modifications or new programs to address JSAT interventions.

III. Recommended Implementation Programs

A. <u>JSAT Recommendation 1</u>. Provide better information to pilots on the location and severity of weather hazard areas, and better methods of using weather information to make safe decisions on how and when to make a flight.

The JSAT Report States:

The greatest proportion of fatal, GA weather accidents can be eliminated by implementing the functional group of interventions contained within this recommendation as a group.

Recommendation 1 supports strategic decision making in avoiding weather hazard areas by providing pilots with accurate and precise graphical weather products and improved methods of disseminating weather information. This recommendation also improves pre-flight briefings and en route advisories for pilots who use a phone, radio, personal computer, or a data link and moving-map display system. Improving PIREPs and weather information for controllers supports tactical decision-making. The "model" Flight Operations Manual further enhances pilot decision making by providing recommendations and guidance for the use of weather information.

The data indicate that providing pilots with better information on the location and severity of weather hazard areas would have a greater impact on preventing accidents than would increased pilot training using existing weather data. Accordingly, interventions to improve flight training were grouped into the second priority recommendation.

In the previous paragraph, the word "data" refers to 22 accident reports that were determined to be representative of GA fatal weather accidents and were the subject of a detailed root cause analysis by the JSAT. The highest priority interventions, ranked by effectiveness and feasibility, provide pilots with improved information on weather hazard areas.

This JSAT Recommendation contains 7 interventions, which are listed along with the supporting implementation programs recommended by the JSIT.

1. <u>JSAT Intervention 3-1</u>. Produce, and make operational, graphical weather information products that show how and when flights can be made safely.

Program 1: Operational, graphic weather hazard area forecasts

This JSAT intervention is the basis for several other JSIT program recommendations. More accurate and precise weather forecasts of weather hazard areas, presented in graphical format to maximize understanding by pilots (including in-flight and under stress), are required to maximize the safety benefits of several other high- priority programs, including:

- Improved FSS briefings
- Improved weather information for controllers
- The FIS weather data-link system
- Improved mountain-area communications and weather guidance

The concept of showing pilots how and when their destination can be reached safely, rather than telling them that their proposed flight is not recommended, represents a fundamental shift in the delivery of weather briefings.

The JSIT determined that this implementation program would be highly effective in reducing fatal accidents, especially when combined with related programs. The benefits of the program would far exceed its costs; hence, the program would make a substantial contribution to Safer Skies fatal-accident reduction goals. The additional cost over currently planned expenditures necessary to bring improved forecasts to pilots would be paid if such forecasts resulted in only two fewer GA, fatal accidents per year.

The JSIT notes that the additional funding required for the recommended program is already within the FAA's Aviation Weather Research program's budget request for FY2001. In addition, the funding also appears to be consistent with the NWS intent to increase its priority for aviation weather. The "Resources" table for this program lists "FAA and NWS" as the source for the additional investment required because the JSIT believes that FAA and NWS management should decide how the program funding will be allocated between them.

The JSIT also notes that approval of the full funding request of the Aviation Weather Research program has been recommended by the FAA's Research, Engineering and Development Committee for the last several years. Likewise, the process of expediting the evaluation of experimental forecast products for operational status is strongly supported by Industry, most recently during the annual Friends/Partners in Aviation Weather meeting of the FAA, NWS and Industry held at the NBAA convention in October, 1999. Finally, the JSIT notes that the DOD also is interested in improved aviation weather forecasts, and could be an additional source of funding for some of these activities.

Program 1	Operational, graphic weather hazard area forecasts
JSAT Interventions	 Provide real-time automated graphical forecasts
3-1a - c, and e	•
5-1a – C, allu e	Increase accuracy and precision of products
	Accelerate operational use of products
	Fund flight verification of products
	Fully fund FAA Aviation Weather Research Program
JSIT IP(s)	FAA - NWS:
	 Accelerate the development of accurate and precise operational area forecasts, in graphical format, showing weather hazard areas: reduced visibility, icing, convection and turbulence. Ceiling and visibility: combine observations, historical statistics, and forecast model output into a new graphical area forecast of IMC conditions. Icing: invest in a network of ground-based millimeter wave radar to detect icing conditions at critical sites. Convection: high-resolution forecast models corrected by frequent NEXRAD observations Turbulence: higher resolution forecast model to permit improved turbulence prediction. Develop automated terminal area guidance forecasts at 3900 airports scheduled to have GPS approaches. Create an aviation weather database (AWD) as the foundation for forecast development and assessment. Create a real-time assessment of aviation forecast models for feedback to developers and forecasters. Support interagency-Industry, next generation, high
	resolution, aviation forecast model.
Performing	AUA-400, ARW-100
Organizations	NWS-AWC
	NASA-AvSP
Lead Organization	NWS-OM14

Resources

FAA and NWS (to be allocated by FAA and NWS Senior Management)

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	7+6	7 + 6	13	13	13	13	76
Contract \$	3.7M + 1.5M	2.4M + 6.4M	9M	8M	6.5M	6.5M	44M

NASA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	7 + 0	7 + 0	5	4	4	0	27
Contract \$	1.5M + 0	1.7M + 0	1.6M	1.8M	2M	0	8.6M

Program 2: New weather products, operational approvals

The full safety benefits of better weather forecasts would be realized if the FAA issued operational approvals for use of such forecasts. These approvals also would provide an additional incentive for voluntarily equipping with weather, data-link avionics.

Program 2	New weather products, operational approvals
JSAT Intervention	Issue generic approvals by FAA Flight Standards for use of
3-1g	new weather products
JSIT IP(s)	FAA
	 Develop AIM and AC guidance for pilots in the use of advanced weather products.
	• Produce inspector guidance for approval of use of advanced weather products for commercial operators.
	Industry
	Publish revisable user guidance for products.
Performing	AFS-400, AFS-200, AFS-800, ARW-200
Organizations	
Lead Organization	AFS-400

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	1.5 + 0	1.5 + 0	0	0	0	0	3
Contract \$	0	0	0	0	0	0	0

Industry: Publication actions.

There are nine Programs that involve an Industry publication action -- this Program, plus Programs 4, 7, 8, 12, 13, 17, 19, and 20. There are seven principal GA pilot/operator publications, by AOPA, EAA, HAI, NBAA, NATA, Flying, Plane and Pilot. It is assumed that each of these publications will average four articles addressing the JSIT Programs, at \$15K per article, for a total cost of \$0.42M.

Program 3: GA automatic downlink of weather data

Equipping high-utilization, GA aircraft operating at altitudes below 10,000 feet with humidity sensors and data links would vastly increase the quantity of atmospheric humidity data at low altitudes, where virtually all atmospheric moisture is found. This additional data, when assimilated into forecast models, would offer large improvements in the accuracy of weather forecasts used by all sectors of the economy. Hence, the JSIT recommends an implementation program that would obtain atmospheric humidity data at altitudes below 10,000 feet. This function is termed an Electronic Pilot Report, or E-PIREP.

Program 3 GA automatic downlink of weather data JSAT Interventions 3-1d and f 									
3-1d and f confirm validity of new experimental weather products. Provide FAA radio spectrum and funding for automatic weather data collection expanded to GA aircraft. JSIT IP(s) FAA * Expand the current transport E-PIREP program to include GA aircraft, under current MDCRS management. • Define GA E-PIREP system/architecture including number and location of participating aircraft. • Reserve additional FAA spectrum for E-PIREPs. • Define incentives for aircraft operator to equip. • Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. • Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS • Expand model input to accept GA data. • Assist in defining model input requirements and architecture for data collection. • Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA • Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. • GA E-PIREP Cost/Benefit Analysis • GA E-PIREP User Incentive Study • Weather model sensitivity analysis via NWS Industry • Associations assist in developing participant incentives. • Manufacturers develop avionics. Performing Organizations	Program 3	GA automatic downlink of weather data							
 Provide FAA radio spectrum and funding for automatic weather data collection expanded to GA aircraft. JSIT IP(s) FAA Expand the current transport E-PIREP program to include GA aircraft, under current MDCRS management. Define GA E-PIREP system/architecture including number and location of participating aircraft. Reserve additional FAA spectrum for E-PIREPs. Define incentives for aircraft operator to equip. Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP Vest Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 		8 8 1 8							
weather data collection expanded to GA aircraft. JSIT IP(s) FAA Image: Second S	3-1d and f								
JSIT IP(s) FAA • Expand the current transport E-PIREP program to include GA aircraft, under current MDCRS management. • Define GA E-PIREP system/architecture including number and location of participating aircraft. • Reserve additional FAA spectrum for E-PIREPs. • Define incentives for aircraft operator to equip. • Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. • Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS • Expand model input to accept GA data. • Assist in defining model input requirements and architecture for data collection. • Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA • Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. • GA E-PIREP Cost/Benefit Analysis • GA E-PIREP Cost/Benefit Analysis • GA E-PIREP User Incentive Study • Weather model sensitivity analysis via NWS Industry • Associations assist in developing participant incentives. • Manufacturers develop avionics. Performing Organizations		· ·							
 Expand the current transport E-PIREP program to include GA aircraft, under current MDCRS management. Define GA E-PIREP system/architecture including number and location of participating aircraft. Reserve additional FAA spectrum for E-PIREPs. Define incentives for aircraft operator to equip. Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing Organizations 		•							
GA aircraft, under current MDCRS management. Define GA E-PIREP system/architecture including number and location of participating aircraft. Reserve additional FAA spectrum for E-PIREPS. Define incentives for aircraft operator to equip. Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL	JSIT IP(s)								
 Define GA E-PIREP system/architecture including number and location of participating aircraft. Reserve additional FAA spectrum for E-PIREPs. Define incentives for aircraft operator to equip. Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. ARW-100, AUA-400, AND-300 NWS FSL 									
and location of participating aircraft.Reserve additional FAA spectrum for E-PIREPs.Define incentives for aircraft operator to equip.Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance.Develop and deploy necessary ground infrastructure, possibly using current weather data link systems.NWSExpand model input to accept GA data.Assist in defining model input requirements and architecture for data collection.Determine US economic benefit from GA data through improvement in forecast model accuracy.NASAContinue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years.GA E-PIREP Architecture Definition StudyGA E-PIREP User Incentive StudyWeather model sensitivity analysis via NWSIndustry Associations assist in developing participant incentives. Manufacturers develop avionics.Performing OrganizationsNASA AWIN NWS FSL		•							
 Reserve additional FAA spectrum for E-PIREPs. Define incentives for aircraft operator to equip. Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing Organizations ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 									
 Define incentives for aircraft operator to equip. Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP Diser Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. 									
 Develop and fund a system to equip aircraft, including STCs, purchase, installation, and maintenance. Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. 		•							
STCs, purchase, installation, and maintenance.• Develop and deploy necessary ground infrastructure, possibly using current weather data link systems.NWS• Expand model input to accept GA data.• Assist in defining model input requirements and architecture for data collection.• Determine US economic benefit from GA data through improvement in forecast model accuracy.NASA• Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years.• GA E-PIREP Architecture Definition Study • GA E-PIREP Cost/Benefit Analysis • GA E-PIREP User Incentive Study • Weather model sensitivity analysis via NWSIndustry • Associations assist in developing participant incentives. • Manufacturers develop avionics.Performing OrganizationsARW-100, AUA-400, AND-300 NASA AWIN NWS FSL									
 Develop and deploy necessary ground infrastructure, possibly using current weather data link systems. NWS Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing Organizations ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 									
possibly using current weather data link systems. NWS • Expand model input to accept GA data. • Assist in defining model input requirements and architecture for data collection. • Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA • Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. • GA E-PIREP Architecture Definition Study • GA E-PIREP Cost/Benefit Analysis • GA E-PIREP User Incentive Study • Weather model sensitivity analysis via NWS Industry • Associations assist in developing participant incentives. • Manufacturers develop avionics. Performing Organizations									
NWS • Expand model input to accept GA data. • Assist in defining model input requirements and architecture for data collection. • Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA • Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. • GA E-PIREP Architecture Definition Study • GA E-PIREP Cost/Benefit Analysis • GA E-PIREP User Incentive Study • Weather model sensitivity analysis via NWS Industry • Associations assist in developing participant incentives. • Manufacturers develop avionics. Performing Organizations									
 Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. 		possibly using current weather data link systems.							
 Expand model input to accept GA data. Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. 		NWS							
 Assist in defining model input requirements and architecture for data collection. Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 		_							
architecture for data collection.• Determine US economic benefit from GA data through improvement in forecast model accuracy.NASA• Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years.• GA E-PIREP Architecture Definition Study• GA E-PIREP Cost/Benefit Analysis• GA E-PIREP User Incentive Study• Weather model sensitivity analysis via NWSIndustry • Associations assist in developing participant incentives. • Manufacturers develop avionics.Performing OrganizationsARW-100, AUA-400, AND-300 NASA AWIN NWS FSL									
 Determine US economic benefit from GA data through improvement in forecast model accuracy. NASA Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 									
improvement in forecast model accuracy.NASA• Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years.• GA E-PIREP Architecture Definition Study• GA E-PIREP Cost/Benefit Analysis• GA E-PIREP User Incentive Study• Weather model sensitivity analysis via NWSIndustry• Associations assist in developing participant incentives.• Manufacturers develop avionics.Performing OrganizationsARW-100, AUA-400, AND-300 NASA AWIN NWS FSL									
NASA• Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years.• GA E-PIREP Architecture Definition Study• GA E-PIREP Cost/Benefit Analysis• GA E-PIREP User Incentive Study• Weather model sensitivity analysis via NWSIndustry• Associations assist in developing participant incentives.• Manufacturers develop avionics.Performing OrganizationsARW-100, AUA-400, AND-300 NASA AWIN NWS FSL		Ŭ							
 Continue funding GA E-PIREP Industry cooperative agreement and sensor development for the next 5 years. GA E-PIREP Architecture Definition Study GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 									
agreement and sensor development for the next 5 years.GA E-PIREP Architecture Definition StudyGA E-PIREP Cost/Benefit AnalysisGA E-PIREP User Incentive StudyWeather model sensitivity analysis via NWSIndustryAssociations assist in developing participant incentives.Manufacturers develop avionics.Performing OrganizationsARW-100, AUA-400, AND-300 NASA AWIN NWS FSL		NASA							
agreement and sensor development for the next 5 years.GA E-PIREP Architecture Definition StudyGA E-PIREP Cost/Benefit AnalysisGA E-PIREP User Incentive StudyWeather model sensitivity analysis via NWSIndustryAssociations assist in developing participant incentives.Manufacturers develop avionics.Performing OrganizationsARW-100, AUA-400, AND-300 NASA AWIN NWS FSL		Continue funding GA E-PIREP Industry cooperative							
 GA E-PIREP Architecture Definition Study GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 									
 GA E-PIREP Cost/Benefit Analysis GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 									
 GA E-PIREP User Incentive Study Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 									
 Weather model sensitivity analysis via NWS Industry Associations assist in developing participant incentives. Manufacturers develop avionics. Performing Organizations ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 		-							
 Associations assist in developing participant incentives. Manufacturers develop avionics. Performing Organizations ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 		· · · · · · · · · · · · · · · · · · ·							
 Associations assist in developing participant incentives. Manufacturers develop avionics. Performing Organizations ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL 		Industry							
Manufacturers develop avionics. ARW-100, AUA-400, AND-300 NASA AWIN NWS FSL									
Performing OrganizationsARW-100, AUA-400, AND-300NASA AWIN NWS FSL		1 01 1							
Organizations NASA AWIN NWS FSL	Performing								
NWS FSL	-								
	Lead Organization	ARW-100							

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	1 + .5	1 + .5	1.5	1.5	1.5	1.5	9
Contract \$	1M + .5M	1M + .5M	1.5M	1.5M	1.5M	1.5M	9M

NWS

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	1 + .5	1 + .5	1 + .5	1 + .5	1 + .5	1 + .5	9
Contract \$.75M + .05M	750K + 165K	.915M	.915M	.915M	.915M	5.49M

NASA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	.25 + 0	.25 + 0	.25	.25	.25	.25	1.5
Contract \$	250K + 0	250K + 350K	250K	250K	250K	250K	1.85M

Note: DOD is a member of the National Aviation Weather Program Council, which coordinates all aviation weather efforts of the US Government. As such, DOD would have an interest in the improvement of weather forecast models that would result from E-PIREPs, and could be an additional funding source. However, the DOD was not a member of the JSIT, and has not been involved in the preparation of this implementation program.

Industry: It is assumed that FAA, NWS or NASA would fund the avionics development and certification costs for the required equipment.

FAA: The cost estimates do not include avionics development, installation, operation or maintenance, but only includes engineering work to determine how to accomplish electronic data downlink by GA aircraft.

1. <u>JSAT Intervention 3-2</u>. Improve the PIREP collection / dissemination system with a common database for controllers, pilots, FSS specialists and dispatchers.

Program 4: Improve PIREP system to warn pilots of weather hazards and improve forecasts.

This program recognizes the importance of PIREPs to weather safety. Frequently, PIREPs are the only reliable data on weather hazards, and will remain so until the accurate and precise graphical forecasts of JSIT Program 1 are in place. In addition, PIREPs are the primary method for forecasters to assess the quality of their forecasts, and for new, automated graphical weather products to be evaluated and improved. In a December 2, 1999 letter to FAA (ATP-300) from the Director of the NWS Aviation Weather Center, the importance of PIREPs to improve aviation weather forecasts was described as well as a proposal to improve the use of PIREPs for this purpose.

Program 4	Improve PIREP system to warn pilots of weather hazards
	and improve forecasts.
JSAT Intervention 3-2	 Encourage more controller involvement in PIREPS by creating simple methods of PIREP entry, retrieval and dissemination by controllers. Develop common PIREP database for controllers and FSS specialists. Provide FSS specialists with display of aircraft position overlaid with weather graphics. Enable GA access to airline PIREP information. Procedural changes for more PIREPs. Dedicated PIREP broadcast frequency in each terminal area.
JSIT IP(s)	 FAA Extensive and comprehensive recurrent training for all controller options on the PIREP system. Enable short-term "fast file" of PIREPs by controllers to FSS, and data base entry by FSS. Develop long-term controller automation, with one-key PIREP entry. Provide access to new NWS graphical products to controllers and FSS specialists. Education of GA pilots on PIREP submissions. Get airlines on common FAA PIREP database. Provide nationwide frequency for PIREP summary broadcasts in terminal areas. Provide FSS specialists with a display for aircraft position in relation to weather phenomenon and special use airspace, and lost aircraft orientation. Improve FSS communications network to accept weather graphics and aircraft position data. Include these in flight instructor training curricula.

	 Publish articles on these improvements and GA PIREP submission and retrieval methods.
Performing	ATP-300, ATP-100, ATP-200, ARW-200, ATA-100, ATA-400,
Organizations	ARU-300, AUA-400, Fort Worth AFSS.
	AOPA, EAA, HAI, NATA, NBAA
Lead Organization	ATP-300

Resources

FAA Training

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	.3 + .7	.3 + .7	.7	.7	.7	.7	4.8
Contract \$.0	0	0	0	0	0	0

FAA Equipment

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	4 + 0	4 + 0	06	0	0	0	14
Contract \$	0	0	1M	0	0	0	1M

Does not include cost of one-key controller data entry.

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

3. <u>JSAT Intervention 2-1</u>. Improve certification to accelerate the equipage of GA aircraft with low-cost avionics for data-link display of weather graphics.

Program 5: Improve avionics certification

Because two other implementation program recommendations involve avionics (FIS and EPIREPS), the JSIT recommends the continuation of current activities associated with implementation of the RTCA Task Force 4 recommendations.

Program 5	Improve avionics certification
JSAT Intervention 2-1b	Implement the recommendations from RTCA Task Force 4 on Certification, to reduce avionics prices through reduced certification costs and delays
JSIT IP(s)	 FAA Continue the currently planned program to use RTCA as a forum to evaluate the Task Force recommendations for an implementation decision, develop implementation plans, and develop implementation schedules. Industry Continue the planned support for RTCA Select committee, Steering Committee, and Working Groups.
Performing Organizations	AVR AOPA, EAA, GAMA, SAMA
Lead Organization	AVR

Resources

The RTCA committees have not yet developed their work plans and terms of reference and the resources for implementation of this program are not yet known. The resources shown below are estimates to support the effort

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	5+0	5+0	0	0	0	0	10
Contract \$	0	0	0	0	0	0	0

Industry

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	5+0	5+0	0	0	0	0	10
Contract \$	0	0	0	0	0	0	0

4. <u>JSAT Intervention 3-3</u>. Expedite implementation of the Flight Information Service (FIS) program to provide a national weather data-link system.

Program 6: Expedite implementation of weather data link system

Providing new weather hazard graphics directly to pilots, via data link for cockpit display relative to current position and route of flight, is one of the most effective methods of facilitating better decisions to avoid weather hazard areas. Industry is currently beginning the funding of the ground infrastructure to provide weather data to appropriately equipped aircraft, as well as the avionics development and certification costs.

The JSIT determined that adequate levels of equipage for effective accident reduction would result from voluntary, benefits-driven equipage of FIS avionics. This conclusion is based on an analysis of:

- FAA data on GA voluntary equipage with LORAN and GPS avionics, including on avionics of cost comparable to multi-function navigation and weather display systems – IFR-approved GPS navigators.
- Industry data on sales of multi-function navigation and communication avionics with the capability to display weather graphics.
- Multiple new product introductions of cockpit displays that integrate GPS navigators with weather from on-board radar and data link, traffic from on-board sensors and data link, and terrain warnings from data bases.
- Trade show announcements of portable weather data link receiver-displays at prices comparable to portable GPS moving map units, coupled with FAA and Industry data on portable GPS sales.

Although the rate of equipage with these avionics is not expected to equal that of portable GPS units, the cost-benefit ratio on FAA resources for the Flight Information Services Data Link (FISDL) program is expected to be very high because the program implementation resources are almost totally paid by Industry.

Voluntary, benefits-driven equipage can be accelerated by providing FAA guidance materials and regulatory benefits for equipped aircraft and having Industry advise the pilot/operator Industry of these benefits (see Program 2 above).

Program 6 resulted from combining JSAT Intervention 3-3, the primary intervention regarding FIS implementation, with JSAT Interventions 2-1a and c, which also were related to FIS implementation.

Brogram 6	Expedite implementation of weather data link system
Program 6 JSAT Interventions	Expedite implementation of weather data link system
2-1a and c 3-3a and b	 Implement the FIS system with free basic services to provide an incentive to equip with avionics to use FIS system: 2-1 a
	 Create other benefits as incentives for pilots to equip for and use FIS. 2-1 c
	• Expedite implementation of the Flight Information Services (FIS) system with two service providers to Provide weather hazard area graphics and text to pilots in flight, with implementation by June 2000. 3-1 a and b
JSIT IP(s)	 FAA Continue efforts to develop and publish AIM guidance for selecting from various providers of weather data. Continue efforts to make regulatory changes that provide benefits from FIS use. Develop and refine operational and aircraft certification guidance for the use and installation of FIS equipment in civil aircraft. Evaluate application of FIS technologies against the existing regulatory structure, amend regulations as required.
	 NASA AvSP Evaluate enhancements to FIS products, delivery and use. Characterize, model and demonstrate decision-making processes using FIS.
	 Industry Service providers, develop, install, operate, and maintain the FIS system infrastructure. Avionics companies, develop and certify FIS avionics Pilot/operator groups, advise pilot Industry of existence and proper use of FIS system. Manufacturers develop training and operational guidance. NASA CRA signatories participate in activities above (NASA AvSP). Associations provide information concerning FIS in journal publications, safety seminars, training and informational materials. Training organizations, prepare training materials on the new weather products. Weather product producers, create new products based
	 on the new Government products. Aircraft owner/operators: equip with necessary avionics.
Performing Organizations	AND-500, AFS-400, ARW-200, AIR-100, ASR-100 NASA AvSP ARNAV, Honeywell, AOPA, AOPA ASF, EAA, GAMA, HAI, NBAA, NATA, SAMA
Lead Organization	AND-500

ARNAV. Honevwell	
, , -	ARNAV, Honeywell

Resources

FAA

1701			-		-	-	
	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	2 + 0	2 + 0	0	0	0	0	4
Contract \$	\$1.44M +0	\$1.27M+0	0	0	0	0	2.71M

NASA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	6+0	6+0	6	6	6	0	24
Contract \$	\$1.44M+0	\$1.27M+0	\$1.5M	\$1.6M	\$1.7M	0	7.51

Industry Service Providers

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	+41	+31	+26	+21	+21	+21	161
Contract \$	11M	11M	4M	4M	4M	4M	40M

Note: These resources do not include substantial investments by other FIS providers, such as Echo Flight and Air Cell, which are not contractually engaged with FAA to provide FIS services.

Avionics Manufacturers

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	+0	+0	0	0	0	0	0
Contract \$	8M	8M	4M	1M	1M	1M	23M

5. <u>JSAT Intervention 4-1</u>. Improve ATC weather information knowledge and dissemination, and develop procedures for handling aircraft that are not weather- tolerant (i.e., not equipped to avoid or cope with weather and are of relatively low performance to climb above or fly around it).

Program 7: ATC weather training, equipment and procedures

Pilots, especially in IFR operations, use information provided by ATC specialists to make weather-related decisions. This information includes the identification and location of weather hazards along a route, and methods of deviating from a clearance to avoid weather hazards once they are identified (including the declaration of an emergency). The lack of timely weather information is a problem, especially for pilots of small airplanes without on-board storm avoidance equipment, ice-protection systems, and the performance to avoid or tolerate weather hazards.

Program 7	ATC weather training, equipment and procedures
JSAT Intervention 4-1	 Improve ATC weather training, equipment and procedures Provide controller recurrent training for special handling of small aircraft. Develop controller tools that provide pilots with better weather hazard information. Provide procedures for special handling of aircraft that are not weather-tolerant.
JSIT IP(s)	 FAA Modify controller recurrent training to implement new weather policy, including better understanding of weather limitations of small aircraft, and a refresher of currently available procedures, such as IFR clearances below MEA /MSA and preplanning for aircraft requiring a reentry into the IFR system after canceling IFR on an approach. Enhance controller displays so that weather hazards are easier for en route and terminal controllers to identify, understand, and disseminate. Change AIM and FAAO 7110.65 and related documents to allow pilots to use the term "Immediate" as it is currently used by controllers. Implement the FAA "Aviation Weather Policy" as currently drafted; and reinforce controller responsibilities for assisting small aircraft in jeopardy due to weather. Industry Educate pilots on best practices for use of available procedures to quickly get the clearances and clearance amendments they need for safe operations, including use of the word "immediate". Educate pilots on need for them to make clear to controllers their problem that is leading to a request for clearance or amendment, or alternative, including use of the word "unable" for any situation that would put the pilot in jeopardy.

	• Educate pilots on what actions are actually taken when emergencies are declared to address pilot perceptions of automatic enforcement actions.
Performing	ATP-100, ATP-300, AFS-400, AFS-800, ASY-300, ARA,
Organizations	AAF, ARW-200, ATX-100, AMA-500
_	NATCA
	AOPA, AOPA ASF, EAA, NBAA, HAI
Lead Organization	ATP-100

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	5.1 + 0	2+0					7.1
Contract \$	0	0					0

Note: Does not include cost of incorporating advanced weather functionality into DSR and STARS. FTEs from existing staffing.

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

6. <u>JSAT Intervention 1-3</u>. Develop a "model" Flight Operations Manual for assessing weather risks and avoiding or coping with weather hazards.

Program 8: Model Flight Operations Manual

Pilots operating under Parts 121, 125, and 135 are required to use a Flight Operations Manual (FOM) that assists them in assessing the risks of a particular operation, including various types of weather hazards. Many corporate flight departments operating under Part 91 also utilize a FOM. However, most pilots operating under Part 91 do not have an FOM to assist them in making the appropriate decision about a flight that may encounter known weather hazards.

Program 8	Model Flight Operations Manual
JSAT Intervention 1-3	Develop a "model" Flight Operations Manual to assist pilots in assessing weather risks and avoiding or coping with weather hazards.
JSIT IP(s)	 FAA New program to develop a flight operations manual that contains decision models and weather-related materials that help the pilot determine a "weather-risk index". The manual also will contain established best practices for making weather decisions. NWS Support FAA activities. NASA AvSP Support FAA activities. Industry Develop and publicize training programs.
Performing	AFS-800, ARW-200, AAM, AFS-400, AND-500
Organizations	NWS
	NASA AvSP
Lead Organization	AFS-800

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	1.5 + 0	1.5 + 0	1.5 + 0	1.5 + 0	1.5 + 0	1.5 + 0	9
Contract \$	+ .1M	+ .05M	.05M	.05M	.05M	.05M	.35M

Industry: There are four programs that involve Industry training actions: This program and Programs 11, 15, and 16. The JSIT estimates that two training organizations will each produce one seminar covering all four programs, and will distribute the seminars to 200 locations each. Total cost \$0.83M over two years.

7. <u>JSAT Intervention 3-4</u>. Improve the FSS system, including DUATS, FSS equipment and weather briefings.

Program 9: Improve FSS specialist training

The JSIT determined that this program would benefit safety significantly. In response to a JSAT recommendation, an FAA office (ATP-300) organized a fiveday GA Summit on Flight Services in November, 1999. At the conclusion of the Summit, the 75 attendees -- FAA HQ, regional, and local management, the FSS specialists union (NAATS), and the major user groups -- reached <u>unanimous</u> agreement on actions to improve pilot weather briefings. The Summit attendees endorsed all of the actions for improving the FSS system that the JSIT had developed previously. The JSIT later adopted other Summit recommendations that were within its scope. Appendix F lists all GA Summit recommendations, including those in the following JSIT program recommendation.

Program 9	Improve FSS specialist training
JSAT Intervention	Improve FSS specialist training to:
3-4a	 Advise pilots on the time that a weather hazard area will move into a planned flight route and the probability of the weather hazard will exist in a specific time period. Describe the location of weather hazard areas relative to the proposed route of flight and ground reference points that pilots can easily identify (e.g., VORs), Suggest alternative flight routes, altitudes, and times that are appropriate for pilot and aircraft capability, and weather and terrain characteristics, Provide only the information that is specific to a flight and interpretation of weather hazards, and emphasize the importance of FSS Specialist training, enhanced by computer-based tutorials and reinforced by Air Traffic Bulletins. Emphasize the importance of FSS Specialist training, enhanced by computer-based tutorials and reinforced by Air Traffic Bulletins.
JSIT IP(s)	FAA
JSIT IP(s)	 Provide advanced aviation weather training to all FSS specialists and supervisors, which will increase their knowledge base. Update and require Pilot Weather Briefing (PWB) course providing refresher and recurrent training every two years. Provide training in customer service to all specialists and supervisors to improve the communications with the general aviation Industry. Provide ground school type training to all specialists and supervisors who are not pilots, to enhance the understanding of aircraft performance and the pilot capabilities and needs. Increase the required number of "tape-talks" to one per quarter to increase quality control of services at FSS facilities.

Lead Organization	NASA AvSP ATP-300
Organizations	NWS
Performing	ATP-300, ARW-200, ASY-300, ATX-100, AAT-200 NAATS
Derforming	 NASA AvSP Continue Weather Avoidance Using Optimization as a decision aid program. Continue Aviation Weather Awareness and Reporting enhancement program.
	 NWS Enhance National Weather Service staff at FAA Academy to develop and staff a Quality Control Office. Incorporate into the training curricula the two NASA decision-aid tools described below.
	 Assess and determine the delivery method for training and quality assurance at each AFSS. Provide on-going training to FSS specialists and supervisors on new weather products as they become available through FISDL, ADDS and other sources. Additionally, the 2-year recurrent PWB course must be modified to include techniques for briefing pilots using these products.

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTEs	1.3 + 0	1.3 + 0	1.3	0	0	0	3.9
Contract \$	0	0	0	0	0	0	0

Note: FTEs may come from existing staffing..

NASA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTEs	.25 + 0	.25 + 0	.25 + 0	0	0	0	.75
Contract \$.62M + 0	.62M + 0	.62M + 0	0	0	0	1.86M

NWS

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTEs	1 +0	1 + 0	1	1	1	0	5
Contract \$	0	0	0	0	0	0	0

Program 10: Improve FSS equipment

Program 10 is closely associated with Program 9, and must be implemented with it to address the JSAT intervention that calls for improving the FSS system. It would provide improved equipment to enable the FSS specialist to maximize the value of his weather decision support to pilots.

Program 10	Improve FSS equipment
JSAT Intervention	Improve FSS equipment:
3-4b	 Provide a link between the FSS weather display and the home computer displays of pilots to create an interactive briefing system that enables both the pilot and the FSS specialist to view the same weather graphics. Accelerate the implementation of advanced weather graphics for FSS specialists. Enable FSS specialists to access information from airline dispatch centers and meteorology departments (e.g., new convective weather products now used for collaborative decision making purposes).
JSIT IP(s) Performing	 FAA Provide approved new weather graphics for FSS specialists through intranet or internet connection to NWS Aviation Digital Data System (ADDS) and FAA Flight Information Services Data Link (FISDL) weather graphics. Enable FSS specialists and pilots to view same weather graphics during weather briefing through use of ADDS. Provide FSS Specialists with enhanced work stations. OASIS program is intended to address this issue, but lower cost methods are recommended in the interim. The follow-on ATP-300 GA Summit meeting scheduled for January 2000 should review the OASIS program and recommend changes to the program or alternate solutions if necessary. FAA HQ should reestablish the minimum functional requirements for FSS-contracted weather products and necessary displays and communications. Fully fund the FAA aviation weather forecast products over ADDS, including taking experimental products to operational status, and make them available for FSS specialists. (See intervention 3-1)
Organizations	
Lead Organization	ATP-300

Resources

FAA – Short-term ADDS Access

FY2000 FY2001 FY2002 FY2003 FY2004 FY2005 1	Total									

FTEs	8	0	0	0	0	0	8
Contract \$	0	0	0	0	0	0	0

FAA – Long-term OASIS

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total		
FTE	9 + 0	9 + 0	9	9	9	9	54		
Contract \$	34M + 0	28.1M +0	17.1M	17.1M	16.6M	16.6M	129.5M		
Nata, Thia	Note: This was the OACIC hudget on 40/4/00								

Note: This was the OASIS budget on 10/1/99.

B. <u>JSAT Recommendation 2.</u> *Improve weather training materials and programs to disseminate them.*

The JSAT Report States:

Recommendation 2 provides for better training of pilots to avoid and cope with weather hazards through improved training materials and enhanced continuing education programs to disseminate such materials.

- 1. <u>JSAT Intervention 1-1</u>. Improve training materials, with updated practical guidance on weather hazard risk assessment, avoidance, and recovery.
- 2. <u>JSAT Intervention 1-2</u>. Improve flight instructor and pilot continuing education programs on weather hazards and decision making.

Program 11: Weather related airmen certification, training, and testing

Program 11 combines these two JSAT interventions together to create a new weather decision-making program, which is based on scenario-based training and testing, and best achieves these interventions.

Although the training interventions (i.e., 1-1 and 1-2) are part of the secondpriority JSAT recommendation, the JSIT determined that Program 11 would be highly cost-effective because it enables the programs associated with the firstpriority JSAT recommendation to maximize GA, fatal-accident reduction.

Program 11	Weather related airmen certification, training, and testing
JSAT Interventions	Pilot training materials
1-1	 Pilot and flight instructor continuing educational programs
1-2	
	 First and hight instructor continuing educational programs FAA Develop and implement scenario-based weather training and testing to develop pilot weather judgment and decision making skills, including: Flight Instructor Refresher Clinic Flight Review CFR part 141 Approved Schools Instrument Proficiency Checks Knowledge Testing Pilot Examiner Standardization Team Practical Test Standards Update weather related ACs. Reinstate Exam-O-Gram Program. Establish a weather-training site on the FAA's home page, with the above information and links to other Government and Industry weather information web sites. Inform pilots of these new training aids.
	license training and testing.
	Industry

	 Develop and incorporate the updated Government products described above into training programs for dissemination to GA pilot groups.
Performing	AFS-800, AFS-400, AFS-600, ARW-200, AAM-500, AND-500
Organizations	NWS-OM14
_	NASA
	AOPA ASF, EAA, NBAA, HAI, NAFI.
Lead Organization	AFS-800

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	1.15 +0	1.25 +0	1.25	1.25	1.25	1.25	7.4
Contract \$	0 + .75M	0+1.3 M	.75M	1.275M	.75M	.75M	5.575M

NWS

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	0 + .125	0 + .125	.125	.125	.125	.125	.75
Contract \$	0	0	0	0	0	0	0

NASA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	0 + .125	0 + .125	.125	.125	.125	.125	.75
Contract \$.5M	.4M	.1M	.1M	.1M	0	1.2M

Industry: See Program 8 for total Industry training resources.

C. <u>JSAT Recommendation 3</u>. Develop mountain and low-altitude airspace communications, navigation and surveillance (CNS) infrastructure, procedures, and information of hazardous weather.

Some of the mountain-flying implementation programs are highly interdependent. These programs provide better weather observations, provide communication systems to get this information to pilots, and provide guidance on weatherinformation sources and criteria.

1. <u>JSAT Intervention 5-1 d and e</u>. Develop enhanced operational procedures for mountain operations.

Program 12: Weather information sources and safety criteria for mountain operations.

Many pilots who routinely fly in flatland areas are unaware that mountain operations present unique weather hazards for small aircraft operations. This implementation program would provide guidance on avoiding these hazards to pilots inexperienced with mountain operations.

Program 12	Weather information sources and safety criteria for mountain operations.
JSAT Intervention 5-1d	Provide guidance for pilots on the best weather information sources and criteria for determining the impact on mountain operations.
JSIT IP(s)	 FAA Survey existing weather and other types of surveillance systems, identifying what each system is capable of detecting, and to what specificity it can measure. Develop matrix of mountain area weather hazards and measurable phenomenon to which that hazard is associated. Provide guidance to the flying public through modification of existing AIM and AC guidance, and development of new guidance materials. Update knowledge tests and practical test standards to incorporate sensor/criteria application to mountain flying. Industry Support survey efforts by providing subject matter experts from different mountain flying communities. Develop revisable training materials, seminars and journal publication articles.
Performing Organizations	AFS-400, AFS-600, ANC-ACO, ARW-200, AAL-200, AFS- 200, ARW-200 AOPA, EAA, NATA
Lead Organization	AFS-400

Resources

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	+ 3.5	+ 1.5	0	0	0	0	5
Contract \$	+ .1M	0	0	0	0	0	.1M

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

Program 13: Install weather sensors in mountain passes

One of the causes of mountain weather accidents is the lack of weather observations in critical mountain passes. Video technology makes practical the collection of such observations. When coupled with weather data link systems, their direct display in the cockpit can further increase their effectiveness.

Program 13	Install weather sensors in mountain passes
JSAT Intervention 5-1e	Place AWOS units or remote TV cameras in critical mountain passes.
JSIT IP(s)	 FAA Continue the currently appropriated, budgeted, and planned program in Alaska. Determine to which passes in the contiguous U.S. this program should be expanded. Provide additional funding and resources to expand the program to the contiguous U.S. Industry Publicize and educate the pilot Industry about the proper use of this data.
Performing Organizations	ANI-700, AAL-500, AFS-400
Lead Organization	ANI-700

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	+ 4	+ 2.5	2.5	0	0	0	9
Contract \$	1.7M	0	0	0	0	0	1.7M

Note: Additional resources to expand this program to the contiguous U.S. have not been determined.

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

1. <u>JSAT Intervention 5-2</u>. Exploit new CNS systems in mountainous areas to improve pilots' ability to fly safely below freezing levels or cloud bases.

Program 14: Use private sector communications systems for ATC

New private-sector communication systems, such as LEO satellites, could provide pilots in mountainous areas with another communication link to FSS and ATC systems.

D 44						
Program 14						
JSAT Intervention 5-2a	 Investigate and define criteria for approval of private sector spectrum for aviation uses. Make available the flight test plan used in the low-cost avionics, test bed program (GlaStar) for FIS data transmission and coverage performance. Make criteria, including technical requirements, available through Advisory Circular, Handbook Bulletin, Aeronautical Information Manual, or Technical Standard Order, as appropriate. 					
JSIT IP(s)	 sector spectrum for aviation uses. Make available the flight test plan used in the low-cost avionics, test bed program (GlaStar) for FIS data transmission and coverage performance. Make criteria, including technical requirements, available through Advisory Circular, Handbook Bulletin, Aeronautical Information Manual, or Technical Standard 					
Performing	AFS-400, AND-500, ASR-100, ATO-400, AIR-100					
Organizations	NASA WINCOMM					
Lead Organization	AFS-400					

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	+ 8	+ 6	5.5	5	0	0	24.5
Contract \$	+ 1M	+ 1.6M	1M	1M	0	0	4.6M

NASA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	5+0	8+0	9	10	10	0	42
Contract \$	2.1M + 0	2.3M + 0	2.4M	3.1M	3.1M	0	13M

Program 15: Operational criteria that provide lower minimum en route altitudes using GPS

In some areas, minimum en route altitudes could be lowered significantly by defining routes based on GPS rather than VOR; hence, aircraft could operate below the freezing level more often. This program involves Industry development of "cost-effective" IFR en route GPS receivers and operator purchases of "sufficient quantities" of these avionics. The terms "cost effective" and "sufficient quantities" are undefined. The intent is that the operational value of the avionics compared to their installed costs would be sufficient to encourage equipage. It is expected that avionics will be produced at various prices for different segments of GA, with no one price defining affordability.

Program 15	Operational criteria that provide lower minimum en route altitudes using GPS
JSAT Intervention 5-2b	Exploit new communications, navigation and surveillance systems in mountainous areas to improve the ability of pilots to safely fly below the freezing level or cloud bases.
JSIT IP(s)	 FAA Use existing Satellite Operational Implementation Team (SOIT) Vertical Flight Working Group (VFWG) resources to establish a GPS stand alone special route development process. Accomplish rulemaking and procedural changes to implement a GPS route structure for the entire NAS, with emphasis on mountainous area criteria development and implementation. Implement WAAS expeditiously Industry Operators apply for special GPS route authorization. Avionics manufacturers develop cost effective IFR en route GPS receivers and operators acquire them in sufficient quantities to provide access to new routes. Associations/groups develop revisable training materials, seminars and journal publication articles.
Performing Organizations	AFS-400, AFS-200, AFS-800, AVN-100, ARM-100
Lead Organization	AFS-400

Resources

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	1 + 4	+1	1	1	1	1	10
Contract \$.2M+ .8M	+.3M	.3M	.3M	.3M	.3M	2.5M

Note: These resources also support the infrastructure development in Program 14 above. They do not include WAAS implementation.

Industry: See Program 8 for total Industry training resources.

3. <u>JSAT Intervention 7-4</u>. Expedite implementation of GPS approaches into smaller airports and heliports.

Program 16: Rotorcraft IFR procedures improvements

The use of IFR operations based on terrestrial navigation systems often reduces safety margins for rotorcraft in typical low-level operations. Rotorcraft safety can be increased by using GPS-based departure and approach procedures.

Program 16	Rotorcraft IFR procedures improvements
JSAT Interventions 7-4a, b and c	 Accelerate publication of precision and non-precision IFR GPS "standalone" approaches to eliminate situations where VFR transitions must be made between an airport with an approach and the actual destination in low visibility conditions. Establish low level departure procedures that allow departures in the direction of the route to avoid creating a fuel-critical situation later in the flight. Issue a rule establishing alternate airport minimums for rotorcraft.
JSIT IP(s)	 FAA Use existing Satellite Operational Implementation Team (SOIT) Vertical Flight Working Group (VFWG) to establish a Vertical Flight GPS Roadmap, Concept of Operations. Complete WAAS testing and criteria development for helicopters. Complete FAR 91helicopter alternate airport rulemaking. Resolve aircraft certification, procedure and heliport design criteria for IFR precision approaches. Expand helicopter efforts to include small airport/GA airplane operations.
	 Industry Provide input to FAA infrastructure development efforts. Operators apply for IFR authorization/qualification. Avionics manufacturers develop cost effective IFR WAAS GPS approach receivers for new procedures Associations/groups develop revisable training materials, seminars, and journal publication articles.
Performing Organizations	AFS-400, AND-500, ACT-300, AAS-300 AHS, HAI, operators and manufacturers
Lead Organization	AFS-400

Resources

FAA							
	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total

FTE	6.5 + 5.5	6.5 + 5.5	12	12	12	12	72
Contract \$	2.65 + 1.5M	2.65 + 1.5M	4.15M	4.15M	4.15M	4.15M	24.9M

Industry: See Program 8 for total Industry training resources.

4. <u>JSAT Intervention 6-1.</u> Encourage pilots to make hazardous weather reports by providing immunity from enforcement.

Program 17: Avoid pilot non-filing of PIREPs because of fear of enforcement

Pilots may not file PIREPs of hazardous weather because of fears that such information could precipitate an enforcement action against them. For example, the JSAT analysis revealed that pilots operating airplanes without ice-protection equipment would not file a PIREP of moderate icing conditions.

Program 17 JSAT Intervention 6-1	Avoid pilot non-filing of PIREPs because of fear of enforcement Encourage pilots to make hazardous weather reports by providing immunity from enforcement.
JSIT IP(s)	 FAA Develop articles explaining that PIREPs are not used to initiate enforcement actions. Determine the impact on enforcement actions for unauthorized flight in IMC or icing conditions if PIREP information from the pilot would be excluded from evidence, and if small, adopt policy not to use PIREP information as evidence in enforcement actions, and then publicize this fact to pilots. Adopt a policy, or initiate a rule change if necessary, so that automatic, electronic PIREPs (data link transmission to the ground of weather data for assimilation into the forecast models and for retransmission to pilots) would not result in the initiation of, or as evidence in, enforcement actions. Industry Publish magazine articles explaining under what circumstances and how PIREPs are used in enforcement action against pilots.
Performing Organizations	AFS-800, AFS-200, AGC, AFS-400, ASY-300 AOPA ASF, EAA, NATA, NBAA
Lead Organization	AFS-800

Resources

FAA

FY2000 FY2001 FY2002 FY2003 FY2004 FY2005	Total
---	-------

FTE	+.25	0	0	0	0	0	.25
Contract \$	0	0	0	0	0	0	0

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

C. <u>JSAT Recommendation 4</u>. *Improve technology for rotorcraft and small airplane weather operations.*

The JSAT Report States:

Recommendation 4 provides safety improvements that are technology-based, some of which will have a larger impact on accidents after the 10-year period because there will be a longer lead-time to implementation.

1. <u>JSAT Intervention 2-3</u>. Increase R&D for on-board systems, such as forward-looking icing and turbulence detectors, which help pilots identify and cope with weather hazards.

Program 18: Synthetic Vision – Virtual VMC in IMC

The JSAT intervention that called for an increase in R&D for on-board systems was divided into two categories before being analyzed by the JSIT.

- Systems currently designed only for transport category aircraft: high technical risk, high resources required for success for transports, high additional resources for application to GA, and long time delay until substantial introduction into GA fleet for effective accident reduction. These programs include SOCRATES, ACLAIM (now the Turbulence Detection LIDAR program), AOS, and RAR. These projects were recommended for reconsideration at a later time because of the delay in potential effectiveness in reducing GA accidents. (See Section IV).
- A system currently designed for GA as well as transport category aircraft and likely affordable by a significant portion of the GA fleet within the Safer Skies period. The Synthetic Vision Program (which uses GPS, detailed terrain databases, and a color-graphics cockpit display to show the pilot an outsidethe-window view of VMC conditions – providing virtual VMC in IMC conditions. This intervention is described in the following implementation program The JSIT believes that this intervention would have a large impact on fatal VFR-into-IMC accidents associated with CFIT and loss of control, due to weather and non-weather causes.

Program 18	Synthetic Vision – Virtual VMC in IMC				
JSAT Intervention	Affordable synthetic vision.				
2-3e					
JSIT IP(s)	NASA				
	• Continue developing a certifiable GA system by 2004.				
	FAA				
	Develop an operational concept.				
	 Develop and certify air traffic and flight procedures. 				
	Develop methods to certify avionics and databases.				
	Industry				
	Avionics manufacturers participating in NASA program.				
	 Publish articles about synthetic vision. 				
Performing	ARW-100, AAR, ATP, AFS-400, AFS-200, AFS-800, AIR-100				
Organizations	NASA AvSP				
	Avionics manufacturers participating in NASA program				
Lead Organization	NASA AvSP				

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	.5 + 0	.5 + 1	3.5	3.5	3.5	3.5	16
Contract \$	+ .15M	+ .3M	.5M	.5M	.5M	.5M	2.45M

NASA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	15 + 0	15 + 0	15 + 0	15 + 0	15 + 0	7 + 0	82
Contract \$	5.3M + 0	6.6M + 0	5.9M + 0	6M	6M	3M	32.8M

Industry (NASA Program Cost Share)

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE							
Contract \$	2M + 0	2M + 0	2M	2M	2M	1M	11M+0

Industry Avionics Development Cost

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE							0
Contract \$				5M	5M		10M

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

- C. <u>JSAT Recommendation 5</u>. Remove regulatory impediments to weather safety, improve certification process, and implement services to encourage voluntary installation of aircraft systems to make small aircraft more weather-tolerant.
- 1. <u>JSAT Intervention 6-2</u>. Define use of "VFR not recommended" and "known and forecast" icing in ways that are operationally useful to pilots

Program 19: Definitions of "VFR not recommended" and "known icing"

The misuse and overuse of the statement "VFR not recommended" by FSS weather briefers has resulted in the statement's ineffectiveness. The JSIT recommends several changes to insure that this warning is used when it applies specifically to conditions along the route at the time of flight. In addition, FSS briefings should focus on how and when the flight can be made safely.

The definition of known and forecast icing is currently defined by enforcement cases in ways that are not operationally useful to pilots.

Program 19	Definitions of "VFR not recommended" and "known icing"
JSAT Intervention 6-2	 Define the use of "VFR not recommended" to avoid over use of this term, resulting in its lack of effectiveness as a warning. Define the use of "known and forecast icing" in a way that are operationally useful to pilots.
JSIT IP(s)	 FAA: Provide more accurate and precise area forecasts of IMC conditions to FSS briefers. See Program 1. Make several improvements in FSS specialist training, including increased knowledge of pilot needs. See Program 7. Direct briefers to understand pilot experience over the route of flight before making the VNR recommendation, including training to do this. See Program 7. Direct briefers to first inform pilots of the location and timing of IMC conditions over the pilot's proposed route and time of flight, and then make the VNR statement if warranted for that route and time. Then query the pilot for his alternative or suggest an alternative route or time for the trip when IMC conditions are not forecast. See Program 7. Re-assess the usefulness of VNR no later than 12/31/04, and if it is still not effective, then delete the VNR statement from briefings. Continue the efforts of the in-flight lcing group to properly define "known and forecast icing conditions".

	other approved weather sources, including providing briefers with information on pilot experience over the proposed route of flight and proposed alternative routes and times.
Performing	ATX, AMA, AFS-800, AFS-200, AGC, AFS-400, ASY-300,
Organizations	ATO-300, ARW-200
	NAATS
	AOPA, EAA, NATA, NBAA
Lead Organization	ATX, AMA

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	+0	+0	0	0	0	0	0
Contract \$	+0	+0	0	0	0	0	0

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

1. <u>JSAT Intervention 2-2.</u> Streamline approval processes to encourage installation of equipment that enables pilots to retain control in IMC and icing

Program 20: Standby attitude indicator

Flight safety could be improved by permitting the substitution of a standby attitude indicator for the required rate-of-turn indicator when the primary attitude indicator fails.

	Standby attitude indicator
Program 20	Standby attitude indicator
JSAT Intervention 2-2b	Approve a proposed rule revision to allow the substitution of a non-tumbling, standby attitude indicator for a gyroscopic, rate-of-turn indicator.
JSIT IP(s)	FAA
	 Analyze safety equivalence of an electric standby attitude indicator vs. a rate-of-turn indicator. Identify potential exemption holders and secure applications. Process applications. Track and study safety trends of exemption holders. If appropriate, initiate rulemaking to revise 14 CFR 91.205(d)(3).
	 Industry Make application for exemption. Provide cost effective, electric, standby, non-tumbling attitude indicators installable in existing aircraft fleet and current production aircraft. Publish information for the flying public concerning the use of the standby attitude indicator in lieu of the rate-of-turn indicator, including human factors.
Performing Organizations	AFS-400, AFS-800, ARM-100, AAM-100, AAR-100, AAM- 100
Lead Organization	AFS-400

Resources

FAA

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	Total
FTE	+1.5	+1	.5	0	0	0	3
Contract \$	+ .1M	0	0	0	0	0	.1M

Industry publishing: See Program 2 for total Industry resources required for publication actions for all Programs requiring a publication action.

F. JSAT Conclusion K: GA Accident Data Should Be Improved

Improved GA accident data

The GA Weather JSAT Final Report noted several deficiencies in the collection of GA accident data, which hampered and, in some cases, prevented the determination of accident root causes. The JSIT concluded that the collection of accident data must be improved significantly in order to monitor the effectiveness of Safer Skies programs.

Program 21	Improved GA accident data
JSAT Conclusion K, Appendix K	 Increase the qualifications for and training of the NTSB persons who input the NTSB reports into the database, to improve their ability to interpret the cases and summarize them. Perform quality control checking of accident reports and databases. Provide better instructions to investigators on the types of information to gather for the record in weather cases so that all relevant data is recorded.
	•

IV. JSAT Interventions Not Recommended

The JSIT concluded that the following JSAT interventions did not provide sufficient safety benefits to be included in an implementation program. The interventions and the explanation for not recommending implementation follow.

Intervention	Reason for Not Recommending Implementation					
2-2a: Streamline certification of wing leveler auto pilots	Certification cost is not a significant barrier to marketing wing-levelers or auto pilots. Affordable wing-levelers and auto pilots exist in the market. Efforts to improve certification will be more productive if applied broadly through the Certification Task Force 4 recommendations and Select Committee efforts.					
2-1c: Apply Advisory Circular 23.1309-1C to reduce the cost of approved ice-protection systems for single-engine airplanes	This AC may be applied now. Certification cost is not a significant barrier to marketing ice protection systems. Efforts to improve certification will be more productive if applied broadly through the Certification Task Force 4 recommendations and Select Committee efforts.					
2-3a, b and c: Develop on board sensors for icing, turbulence, etc.	Several programs are underway to provide system for transport category aircraft. Assuming these programs would be successful for such aircraft (and they have high technical risk), program modifications would be required to produce products for GA applications. Resources for such					

	program modification would be in the range of \$6M per year, relatively large compared to higher priority interventions. These programs are several years away from a product for transport aircraft, and are even further from application to GA. It appears that there is little likelihood of an impact on GA accidents within the 10-year time frame of the Safer Skies Agenda.
4-2a, b, and c: Implement systems to provide graphical display of traffic information for use when ATC frequency must be abandoned to gather weather information	Other recommended programs, such as FIS data link, an improved FSS system, improved controller weather information, and improved pilot controller communications, would sufficiently address the purpose of the intervention as to reducing weather accidents. However, implementation of low-cost traffic display systems may be a cost-effective intervention for reducing GA mid-air accidents, but this is outside the GA Weather JSIT's charter.

V. Conclusions

A. Interdependence of Implementation Plans

Many of the recommended implementation programs are interdependent. Hence, their effectiveness depends on the extent to which the elements of <u>each</u> program are actually implemented. For example, the program that provides improved weather forecasts is interdependent in that:

- It contains "foundation" elements, such as the aviation database, that must be implemented in order to produce the required quality of forecast graphics.
- It contains forecasts that serve as the basis for other forecasts.

The effectiveness of implementation programs also depends on the extent to which <u>other</u>, closely related programs are actually implemented. For example:

- The forecast program depends on improvements in the PIREP and automatic, electronic PIREP systems to verify the new forecasts.
- The effectiveness of FSS improvements and the FIS data-link system depend in large part upon improved weather forecasts.
- All of these programs are enhanced by improved guidance materials and weather training and testing.

Although the implementation of a single program would reduce fatal, GA weather accidents, the coordinated implementation of all programs will be much more effective and far more likely to achieve the Safer Skies fatal-accident reduction goal. This is especially true for the programs that are designed to improve weather forecasts and the FSS system because these programs are depend upon the implementation of several other programs.

A. Matching a Specific JSIT Program Recommendation to Accident Reduction Statistics

Specific JSIT program recommendations can not be matched to a numerical reduction in fatal, GA weather accidents for the following reasons.

- 1. The interdependence discussed above couples the effectiveness of a specific intervention to other interventions based upon the extent to which the other interventions are implemented.
- 2. The NTSB and FAA accident database categories do not reveal several of the root causes that were identified by the JSAT. Hence, the NTSB statistics cannot be directly related to these root causes or their interventions. In addition, there are major deficiencies in the collection, analysis, and categorization of data associated with GA accidents. The JSIT recommends addressing these deficiencies through improved GA accident data collection.
- **3.** Almost all of the accidents examined by the JSAT had multiple root causes, and a single intervention directed at one of the causes could have prevented most of the accidents. For example, many accidents studied had the following root causes:
 - Inadequate information presented to the pilot on the location or severity of weather hazard areas;
 - Inadequate FSS interpretation of the meaning of available information;
 - Inadequate pilot training on assessing the risks associated with weather hazards;
 - Inadequate pilot training on avoiding or exiting weather hazard areas; and,
 - Inadequate aircraft systems for avoiding or tolerating the hazard.

Specific interventions do not map directly to the avoidance of specific accidents. Rather, the goal of JSIT program recommendations is to lower the probability of a fatal weather accident by eliminating each major root cause.

- 1. Some JSAT interventions address multiple root causes of accidents, directly or indirectly. For example, facilitating electronic PIREPs (automatic downlink of weather information such as temperature and humidity) by GA aircraft:
 - Applies directly to the root cause of lack of knowledge of current weather conditions because, by providing a rich source of PIREPs on current conditions, the ability of pilots to make decisions to avoid weather hazard areas is enhanced;
 - Applies indirectly, but more broadly, by improving the accuracy and precision of NWS computer forecast models through the inclusion of much more atmospheric data, especially low-altitude water content; and
 - Applies indirectly, but more broadly, by enabling the producers of weather products to verify and improve their forecast products.
- 1. Some JSAT interventions apply to several different types of accidents (e.g., VFR-into-IMC, thunderstorm, etc). For example, efforts to improve the methods of making weather forecasts by establishing a PIREPs database, an aviation weather database, and a real- time forecast verification program

apply to ceiling and visibility forecasts (addressing VFR into IMC cases), convection forecasts (affecting thunderstorm cases), and icing forecasts, etc. There is no way to specify these benefits by type of accident, unless one assumes a pro-rata reduction according to the incidence of each type of accident.

For these reasons, the programs recommended by the JSIT should each be viewed as reducing the probability of a fatal GA accident, by an amount that is not quantifiable at the program level.

C. Dual Effect of Communications: Safety vs. FAA Enforcement and Liability Interests

The JSIT spent a considerable amount of time discussing safety impediments caused by the dual effect of some weather communications between pilots and controllers. These communications can have the effect of reducing fatal, GA weather accidents. However, these communications also can be used by the FAA for enforcement actions, or to address FAA liability concerns. The JSIT reached the following conclusions:

1. VFR Not Recommended (VNR)

The VNR issue involves the application of this statement for FAA liability protection, and the perceived overuse of the statement has resulted in its lack of effectiveness as a warning. However, the JSIT also recognized that proper use of the statement ensures that pilots understand weather conditions are unsuitable for VFR flight. The JSIT agreed that the present system is "broken", but there was considerable discussion of whether it could be fixed or should be abolished. The JSIT decided to recommend actions that could "fix" the use of this term, and to revisit the issue after these remedial actions were implemented. The term would be abolished if it continued to be used ineffectively as a warning after the remedial actions had been implemented.

2. Icing PIREPs

Pilots in non-ice certified aircraft who are in icing conditions greater than "trace', or pilots of known-ice certified aircraft who are in severe icing conditions, may not provide information on icing conditions to ATC because of fear that this information could result in an enforcement action. The JSIT considered recommending immunity from enforcement to encourage PIREPs of icing conditions. However, the JSIT concluded that educating pilots that PIREPs by themselves are not used to initiate enforcement actions would substantially address the purpose of the intervention. This would eliminate the need for rulemaking to provide immunity from enforcement in such situations.

3. Declaring an Emergency or Refusing a Clearance

Pilots who fear that their statements will be used for enforcement purposes may be reluctant to declare an emergency or refuse a clearance to get an alternative altitude or routing quickly when in icing conditions beyond their capabilities, or remain outside icing conditions,. The JSIT discussed whether some form of immunity was appropriate given these circumstances. When declaring an emergency, pilots consider the conflicting policies of improving the safety of an operation versus the potential for precipitating an enforcement action. The JSIT agreed that the present situation was "broken", but disagreed on whether it could be fixed short of granting pilots immunity from enforcement actions.

The JSIT recommends programs to educate pilots on effectively communicating to controllers the reason for a clearance change request and the degree of urgency in the request. The JSIT also recommends education for pilots and controllers on pilots' use of the word "immediate" in requesting a clearance amendment to indicate that an emergency may be imminent if the current situation continues.

D. Endorsement of JSAT Conclusions

The JSIT has reviewed and endorses each of the conclusions, A - K, reached by the JSAT in its Final Report:

- A. The FAA weather information and dissemination system must undergo fundamental changes to better support the flight planning needs of GA pilots.
- B. Intuitive graphical depictions of weather hazard areas made available directly to pilots are the most effective form of decision support for most weather hazards.
- C. Many of the JSAT Recommendations have been included in previous studies.
- D. Interventions must be implemented as high priority in order to achieve the goals of the Safer Skies Agenda.
- E. ASRS information should be used in developing and assessing the effectiveness of interventions.
- F. Significant reduction in fatal accidents requires an implementation process with accountability elements.
- G. Producing more stringent rules related to weather will not increase safety.
- H. Currently required pilot training hours are adequate.
- I. The Root Cause Analysis process revealed that descriptors (e.g., "gethome-itus", and "get-there-itus", "pilot error") are not sufficient to determine the underlying causes of the weather accidents.
- J. JSAT lessons learned (contained in Appendix J of the JSAT Report).
- K. Accident report data deficiencies (addressed in Program 21).

Appendix A

Acronym Glossary

AAAS	American Association for the Advancement of Science
AAWU	Alaskan Aviation Weather Unit
AC	Advisory Circular
ACARS	Aircraft Communications Addressing and Reporting System
ACLAIM	Coherent LIDAR for Advanced In-Flight Measurements
ACO	Aircraft Certification Office (FAA)
AD	Aviation Database
ADDS	Aviation Digital Data Service
ADM	Aeronautical Decision Making
ADS-B	Automatic Dependent Surveillance-Broadcast
AFOS	Automation of Field Operations and Services
AFSS	Automated Flight Service Station
AFTN	Air Force Television Network
AFWA	Air Force Weather Agency
AGATE	Advanced General Aviation Transport Experiments
AGFS	Aviation Gridded Forecast System
AGL	Above Ground Level
AIM	Aeronautical Information Manual
AIRMET	Airmen's Meteorological Advisory (WA)
AIV	Aviation Impact Variables
ALDARS	Automated Lightning Detection and Reporting System
ALPA	Airline Pilots Association
A-MOS	Automated Model Output Statistics
AMS	American Meteorology Society
ANBURS	Alphanumeric Backup Replacement System
AOB	Aviation Operations Branch
AOPA	Aircraft Owners and Pilots Association
AOS	Aerospace Operations Program (NASA)
APA	Allied Pilots Association
APST	Aviation Products and Services Team
ARAM	Aviation, Range, and Aerospace Meteorology
ARINC	Aeronautical Radio, Incorporated
ARSI	Atmospheric Research System, Incorporated
ARTCC ASB	Air Route Traffic Control Center
ASC	Aviation Support Branch Aviation Services Coordinator
ASD	
ASF	Aircraft Situation Display (ARINC) AOPA Air Safety Foundation
ASIST	Aviation Safety Investment Strategy Team (NASA)
ASOS	Automated Surface Observing System
ASRS	Aviation Safety Reporting System (NASA)
ATA	Air Transport Association
ATC	Air Traffic Control
ATCSCC	Air Traffic Control System Command Center
ATIS	Automated Terminal Information System
ATPAC	Air Traffic Procedures Advisory Committee
AUA	Air Traffic Systems Development
AVARS	Aircraft Vertical Acceleration Reporting System
AVN	Aviation Model (forecast tool)
AvSP	Aviation Safety Program (NASA)
AWC	Aviation Weather Center
AWIN	Aviation Weather Information
AWIPS	Advanced Weather Interactive Processing System
AWOS	Automatic Weather Observation System
AWR	Aviation Weather Research
BAMS	Bulletin of the American Meteorological Society
BLM	Bureau of Land Management

BPAA	Business Pilots Aircraft Association	
BUFR	Binary Universal Format for data Records	
C&V	Ceiling and Visibility	
CAeM	Commission for Aeronautical Meteorology	
CAFTI	Committee on Analysis and Forecast Techniques Implementation	
CANAM	Canadian/American	
CAPS	Center for Analysis and Prediction of Storms	
CASC	Central Administrative Support Center	
CAT	Clear Air Turbulence	
CBI	Computer-Based Instruction	
CCFP	Collaborative Convective Forecast Product	
CCTV	Closed Circuit Television	
CD	Compact Disc	
CDB	Computing Development Branch (NCEP)	
CDM	Collaborative Decision Making	
CDMnet	Collaborative Decision Making Network	
CFI	Certified Flight Instructor	
CFIT	Controlled Flight into Terrain Chief Financial Officer	
CFO CFR	Code of Federal Regulations	
CGEN	Convective SIGMET Generation	
CIT	Convection-Induced Turbulence	
CNS	Communications, Navigation, Surveillance	
COBEL	Column modeling of the heat budget and cloud dynamics	
COMET	Cooperative program for Operational Meteorology, Education, and Training	
CONUS	Continental United States	
CRA	Cooperative Research Agreement	
CRDA	Collaborative Research and Development Program	
CRH	Central Region Headquarters	
CSI	Conditional Symmetric Instability	
CSI	Critical Success Index	
CSTAR	Collaborative Science, Technology, and Applied Research	
CWA	Center Weather Advisory - CWSU	
CWSU	Center Weather Service Unit	
D-ATIS	Digital Automatic Terminal Information System	
DBNET	Distributed Brokered Networking District of Columbia	
DC DCP	District of Columbia Document Change Procedure	
DDS	Domestic Data Service	
DIFAX	Digital Facsimile	
DOD	Department of Defense	
DSR	Display System Replacement	
DTC	Data Transformation Corporation	
DUAT	Direct User Access Terminal	
EAA	Experimental Aircraft Association	
EC	Environment Canada	
EFAS	En Route Flight Advisory Service	
EFF	Experimental Forecast Facility	
E-FIS	Electronic Flight Instrument System	
EMC	Environmental Modeling Center	
E-PIREPS	Electronic Pilot Reports	
EPRI EPSCoR	Electric Power Research Institute Experimental Program for the Stimulation of Competitive Research	
EPV	Equivalent Potential Vorticity	
Eta	Greek letter, describes a constant height coordinate model system	
ETOPS	Extended Twin Engine Operations Over Water	
F&E	Facilities and Equipment	
FA	Area Forecast	
FAA	Federal Aviation Administration	
FAA/AWR	Federal Aviation Administration/Aviation Weather Research Division	
FAA/ARW	Federal Aviation Administration/Aviation Requirements B Weather group	
FAAO	FAA Order	
FAR	Federal Aviation Regulation	
FAR	False Alarm Ratio	
	2	20

FAWS	Flight Advisory Weather Service
FBO	Fixed Base Operator
FD	Winds and Temperatures Aloft Forecasts
FIAS	Flight Information Advisory Service
FIR	Flight Information Region
FIS	Flight Information Services
FISDL	Flight Information Services Data Link
FMS	Flight Management System
FNMOC	Fleet Numerical Meteorology and Oceanography Center
FOM	Flight Operations Manual
FOQA	Flight Operations Quality Assurance
FOUS	Forecast Output United States
FSDO	Flight Standards District Office (FAA)
FSL	Forecast Systems Laboratory
FSS	Flight Service Station
FSU	Florida State University
FTE	Full Time Equivalent
FTP	File Transfer Protocol
FTW	Fort Worth, TX
FVT	Forecast Verification Tool
FY	Fiscal Year
GA	General Aviation
GAAPC	General Aviation Action Plan Coalition
GAC	General Aviation Coalition
GAMA	General Aviation Manufacturers Association
GAI	Global Atmospherics, Incorporated
GAWP	Graphic Aviation Weather Product
GDS	GeoMet Data Services
GEMPAK	General Environmental Meteorological Package (programming language)
GFDL	Geophysical Fluid Dynamics Laboratory (ERL)
GOES	Geostationary Operational Environmental Satellite
GPS	Global Positioning System
GSA	General Services Administration
GTE	General Telephone and Electric
GUI HI	Graphical User Interface Hawaii
HIWAS	
HPC	Hazardous In-Flight Weather Advisory Service Hydrometeorological Prediction Center
HQ	Headquarters (FAA)
HUD	Housing and Urban Development, U.S. Department of
IATA	International Air Transport Association
ICAO	International Civil Aviation Organization
IDS	International Data Service
IFFDP	International Flight Folder Documentation Program
IFR	Instrument Flight Rules
IIDA	Integrated Icing Diagnostic Algorithm
IIFA	Integrated Icing Forecast Algorithm
IFIPDT	In-Flight Icing Product Development Team
ILS	Instrument Landing System
IMC	Instrument Meteorological Conditions
IOC	Initial Operating Capability
IOS	Integrated Operational Services
IP	Implementation Plan
IPS	Implementation Plan Summary
IR	Infrared
ISCS	International Satellite Communications System
ISE	In-Flight Service Enhancement
ITFA	Integrated Turbulence Forecast Algorithm
ITWS	Integrated Terminal Weather System
ITT	Information Technology Team
JMA	Japanese Meteorological Agency
JRC	Joint Resources Council (FAA)
JSAT	Joint Safety Analysis Team
JSC	Joint Steering Committee
	F

JSIT	Joint Safety Implementation Team
KCFB	Kansas City Federal Building
KMARD	Kansas Modernization and Restructuring Demonstration
KSA	Knowledge, Skills, and Abilities
KSU	Kansas State University
KU LAN	University of Kansas Local Area Network
LDADS	Local Data Acquisition and Dissemination System
LDM	Local Data Manager
LEO	Low Earth Orbiting (satellites)
LIDAR	Light Detection and Ranging
LIFR	Limited Instrument Flight Rules
LINUX	UNIX-like computer operating system
LIVV	Lifted Index Vertical Velocity
	Lightning Location and Protection
LLWAS LOT	Low-Level Wind Shear Alert System Local Office Team
LPATS	Lightning Position and Tracking System
MARD	Modernization and Restructuring Demonstration
MATT	Managed and Accelerated Technology Transfer
MBRFC	Missouri Basin River Forecast Center
McIDAS	Man Computer Interactive Data Acquisition System
MDCARS	Meteorological Data Collection and Reporting System
MEA	Minimum En route Altitude
MESO METAR	Mesoscale Convective Unit Meteorological Aviation Report
MIC	Meteorologist In Charge
MMCR	Millimeter-Wave Cloud Radar
MM5	The Penn State/NCAR mesoscale model
MOA	Memorandum of Agreement
MOS	Model Output Statistics applications
MOREnet	Missouri Research and Education Network
MPC	Marine Prediction Center
MSL MVFR	Mean Sea Level
MWAVE	Marginal Visual Flight Rules Mountain Wave algorithm
MWO	Meteorological Watch Office
NACA	National Advisory Committee on Aeronautics
NADIN	National Airspace Data Interchange Network (FAA)
NAOS	North American Atmospheric Observing System
NAP	NCEP Advisory Panel
NAS	National Airspace System
NASA NASDAC	National Aeronautics and Space Administration National Aviation Safety Data Analysis Center (FAA)
NATA	National Air Transportation Association
NAWAU	National Aviation Weather Advisory Unit
N-AWIPS	National centers-AWIPS
NBAA	National Business Aviation Association
NCAR	National Center for Atmospheric Research
NCAR/RAP	National Center for Atmospheric Research/Research Applications Program
NCEP	National Centers for Environmental Prediction
NCO NCDB	NCEP Central Operations NCEP Computer Development Branch
NCWF	National Convective Weather Forecast
NDB	Non-Directional Beacon (navigational aid)
NESDIS	National Environmental Satellite, Data and Information Service
NESDIS/SAB	National Environmental Satellite, Data and Information Service/Satellite
	Analysis Branch
NEXRAD	Next Generation Weather Radar
NGM	Nested Grid Model
NIDS NLDN	NEXRAD Information Distribution Service National Lightning Detection Network
NMC	National Lightning Detection Network National Meteorological Center
NMOC	National Meteorological Operations Centre (Australia)
-	· · · · · · · · · · · · · · · · · · ·

NNICE	Neural Network for Icing
NOAA	National Oceanic and Atmospheric Administration
NOTAM	Notice to Airmen
NPRA	National Performance Results Act
NPSU	National Public Service Unit
NRL	Naval Research Laboratory
NSF	National Science Foundation
NSSFC	National Severe Storms Forecast Center
NSSL	National Severe Storms Laboratory
NTOP	NCEP Technical Operating Plan
NTSB	National Transportation Safety Board
NWS	National Weather Service
NWSEO	National Weather Service Employees Organization
NWSH	National Weather Service Headquarters
NWSTC	National Weather Service Training Center
NWSTG OASIS	National Weather Service Telecommunications Gateway Operational and Supportability Implementation System
OAT	Office of Aerospace Technology (NASA)
OCS	Oklahoma Climatological Survey
OFCM	Office of the Federal Coordinator for Meteorological Services and Supporting
	Research
OJTI	On-the-Job Training Instructor
OM	Office of Meteorology
OSD	Office of Systems Development
OSO	Office of Systems Operations
OU	University of Oklahoma
PC	Personal Computer
PDT	Product Development Team
PHI	Petroleum Helicopters Incorporated
PIREP	Pilot Report
POD	Probability of Detection
PPI	Plane Position Indicator
PRC	Planning and Research Corporation
PTS	Practical Test Standards
PUFF PUP	A high-resolution volcanic ash-tracking model
PWB	Principal User Processor Pilot Weather Briefing
QCO	Quality Control Office
QTP	Quality through Partnership
R&D	Research and Development
RAFC	Regional Area Forecast Center
RAM	Regional Area Meteorologist
R/C	Rotorcraft
RCA	Root Cause Analysis
RCM	Radar Coded Message
RDC	Research Data Corporation
RF	Radio Frequency
RFC	River Forecast Center
RFI	Radio Frequency Interference
RFP	Request For Proposal
RMTN ROB	Regional Meteorological Telecommunications Network Radar coded Observation
RTA	Remote To AFOS
RTVS	Real Time Verification System
RUC	Rapid Update Cycle (forecast model)
SAMEX	Storm and Mesoscale Ensemble Experiment
SAWS	Stand Alone Weather System
SELS	Severe Local Storms
SIGMET	Significant Meteorological Advisory (WS)
SIGWX	Significant Weather
SLD	Supercooled Large Droplets
SMG	Space flight Meteorology Group (NOAA)
SOCRATES	Sensor for Optically Characterizing Ring-eddy Atmospheric Turbulence
	Emanating Sound
	CE.

SOIT SOO	Satellite Operational Implementation Team Scientific Operations Officer
SPAWAR	Space and Naval Warfare Systems Command
SPC	Storm Prediction Center
SRH	Southern Region Headquarters
SRRS	Systems Record Retention System (AFOS)
STARS	Standard Terminal Automation Replacement System
SUA	Special Use Airspace
SUNYA	State University of New York B Albany
S-TAF	Specialized Terminal Aerodrome Forecast
ТА	Translation Algorithm
TAF	Terminal Aerodrome Forecast
TAMU	Tropical Aviation Meteorological Unit
TAP	Transition Aviation Project
TDAM	Turbulence Detection and Mitigation (NASA)
TDL	Techniques Development Laboratory
TDU	Techniques Development Unit
TDWR	Terminal Doppler Weather Radar
TEGO	Test Experiment Guidance Operational
TELCON	Telephone Conversation Traffic Information Services
TIS TKE	
TMU	Turbulent Kinetic Energy Traffic Management Unit
TPC	Tropical Prediction Center
TRACON	Terminal Radar Approach Control
TRMM	Tropical Rainfall Measuring Mission (global change)
TSO	Technical Standard Order
TSS	True Skill Statistic
TWEB	Transcribed Weather En route Broadcast
TWIP	Terminal Weather Information for Pilots
UCAR	University Corporation for Atmospheric Research
UKMETO	United Kingdom Meteorological Office
UPS	Uninterruptible Power Supply
UPS	United Parcel Service
USAF	United States Air Force
USGS	United States Geological Survey - Department of Interior
USMC	United States Marine Corps
USWB	United States Weather Breaster Program (NWC, NCE)
USWRP	United States Weather Research Program (NWS, NSF)
VAAC VAD	Volcanic Ash Advisory Centers Velocity Azimuth Display (NEXRAD)
VAD VAS	VISSR Atmospheric Sounder
VDUC	VAS Data Utilization Center
VFR	Visual Flight Rules
VFWG	Vertical Flight Working Group
VGF	Virtual Graphics File
VHF	Very High Frequency (Radio)
VIL	Vertically Integrated Liquid water
VISSR	Visible and Infrared Spin Scan Radiometer
VMC	Visual Meteorological Conditions
VNR	VFR Not Recommended
VOR	VHF Omni-directional Range (navigational aid)
VV	Vertical Velocity
VVSTORM	model-based convection algorithm
WAAS	Wide Area Augmentation System (GPS) World Area Forecast Center
WAFC WAFS	World Area Forecast Center World Area Forecast System
WARP	Weather and Radar Processor
WARP	Weather Bureau
WCM	Warning Coordination Meteorologist
WEFAX	Weather Facsimile
WFO	Weather Forecast Office
WINCOMM	Weather Information Communication (NASA)
WINN	Weather Information Network

WMO	World Meteorological Organization
WMO	World Meteorological Organization
WMSCR	Weather Message Switching Center Replacement
WRF	Weather Research and Prediction
WSI	Weather Services International Corporation
WSR-88D	Weather Surveillance Radar, 1988 Doppler
WxAP	Weather Accident Prevention (NASA)
WxLink	Weather Link

Appendix B

Definition of Terms

Funding, Appropriated	Funding for this task is included in the FY 2000 FAA, NASA, or NWS budget as enacted by Congress.
Funding, Budgeted	Funding for this task is included in the FY 2001 FAA, NASA, or NWS budgets submitted to OMB for review.
Funding, Planned	Funding for this task is included in FY 2002 or subsequent fiscal year FAA, NASA, or NWS plans currently under development.
Funding, Additional	Funding for this task would be in addition to that already appropriated, budgeted, or planned, and would require a reprogramming in FY 2000, and revision in the budget proposal for FY 2001, or changes in the plans for FY 2002 and beyond.
Certification Cost	The cost to an applicant for design or manufacturing approval (e.g., a type certificate, supplemental type certificate, etc.), due solely to the FAA certification process. These costs would include additional non-recurring engineering or FAA liaison costs, or recurring product costs that were incurred because of the FAA certification process. They do not include product development, testing, analysis, or documentation costs that a typical aviation company would have incurred in the absence of FAA certification.
Data link	Digital telecommunications capability which supports communication between airborne and ground based- computers and their operators. This system may be used to transmit weather information, using text and/or graphics, from the ground to the aircraft.
GA Community	For the purpose of this report, to delineate responsibilities for tasks: All of the sector stakeholders in general aviation,

	including industry and non-industry participation, but excluding the FAA (eg. Aircraft owners and operators, pilots, manufacturers, maintenance professionals, and service providers, etc.).
Implementation	The means for accomplishing the incorporation of a given intervention
Intervention	Suggested solutions, things to do to prevent or lessen the identified problem.
Intervention Strategy	A proposed activity or system-wide change intended to prevent, correct or mitigate an identified safety problem associated with a cause of a fatal accident.
Priority Program	A defined program with measurable objectives, intermediate milestones and schedule dates, sufficient resources to meet the objectives and schedules, and program manager authority to accomplish the program tasks.
Root Cause	A specific systemic reason or factor that contributed to a fatal accident.
Weather Accident	 As defined by the JSAT: An accident caused by: The pilot's failure to change the operative flight plan (the route and altitude the pilot plans to fly from the aircraft's present position to its destination) in order to maintain safe separation from a Weather Hazard Area because of: insufficient information on the location and severity of Weather Hazard Areas; or insufficient knowledge, skill and judgment to properly interpret available information Inadequate aircraft performance or equipment to avoid or tolerate the weather hazard without catastrophic results.
Weather Hazard	As defined by the JSAT: A weather phenomena that could have a catastrophic effect on the flight of a specific pilot, aircraft, and mission. This effect could be caused by a structural failure, insufficient aircraft performance to maintain terrain or obstacle clearance, inability of the pilot to navigate clear of terrain or obstacles, or the inability of the pilot to control the aircraft. Weather Hazards are determined in reference to the capabilities of the pilot and the aircraft. They include: 1. IMC 2. Thunderstorms 3. Icing 4. Turbulence
Weather Hazard Area	As defined by the JSAT: A portion of airspace specified horizontally, vertically, and temporally, that must be avoided to maintain safe separation from weather hazards within it. It is an area within which a pilot cannot reliably avoid weather hazards through normal deviations because of the relatively close spacing, severity level, or growth rate of the weather hazard contained in it.

Appendix C

Charter for Joint Safety Implementation Team (JSIT)

- I. **Purpose**. To develop prioritized implementation strategies and action plans and after approval by the Joint Steering Committee (JSC), coordinate the implementation of the strategies and plans.
- II. Background. Industry and government, through the JSC, have jointly agreed to pursue a data driven approach to reducing the general aviation (GA) fatal accident rate while maintaining or improving GA utility and affordability. Industry and government have further agreed that cooperatively and selectively pursuing implementation of the high leveraged safety intervention strategies will maximize safety benefit. The WEATHER and CFIT JSATs have identified a number of intervention strategies to reduce the fatal accident rate. The next step is for a team to develop prioritized implementation strategies and action plans for those interventions.
- III. Tasks. The JSIT will use the process developed by the Commercial CFIT JSIT wherever possible to complete the tasks. Adjustment to the process is allowed if necessary because of differences in General Aviation. It is the JSIT member responsibility to coordinate their implementation strategies and get input within their organization.

A. Intervention strategies identified by the CFIT or WEATHER JSATs will be analyzed by the JSIT for the purposes of determining implementation feasibility and identifying prospective strategies for implementation.

- B. The implementation plan will contain:
 - prioritized implementation strategies
 - identification of responsible parties
 - resources required for each intervention implementation
 - a list of major implementation milestones
 - metrics for tracking success of the interventions
 - a communications strategy aimed at gaining "stakeholder" buy-in

C. Within six months from its formation the JSIT will present the prospective interventions identified for implementation to the JSC for review and approval. Rationale for how all the CFIT or WEATHER JSAT intervention strategies were addressed will be included in the plan report.

D. As directed by JSC, the JSIT will make periodic progress reports on implementation status JSC.

- III. **Membership**. Team members are responsible for communicating issues within their lines of business or organizations and for representing the technical and programmatic positions of their respective entities. Conclusions from the JSIT are brought to the JSC for review and approval.
- IV. **Resources**. JSC participating organizations agree to provide appropriate financial, logistical and personnel resources necessary to carry out this charter and approved implementation strategies.

revised - 6/21/99

Appendix D

Resource Requirements by JSAT Recommendation

JSAT Recommen- dation ^{ab}	FY 2000		FY	FY 2001		FY 2002		FY 2003		FY 2004		FY 2005	
uuton	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	
JSAT Recom	mendat	ion 1 (in	cludes	JSIT Pro	grams 1	–10)	1						
FAA	45.7 +7.2	40.190 +0.050	35.0 +7.2	3.800 +6.920	33.0	28.650	25.7	26.650	25.7	24.650	25.7	24.650	
NWS	2.0 +0.5	0.750 +0.050	2.0 +0.5	0.750 +0.165	2.5	0.915	2.5	0.915	2.5	0.915	1.5	0.915	
NASA	13.5	3.810	13.5	3.840	11.5	3.970	10.25	3.650	10.25	3.950	0.25	0.250	
Industry	13.0	10.000	12.0	2.000	5.0	2.000	5.0	2.000	5.0	2.000	5.0	2.000	
Subtotal	74.2 +7.7	54.750 +2.100	62.5 +7.7	39.390 +7.085	52.0	35.535	43.45	33.215	43.45	31.515	32.45	27.815	
JSAT Recom	mendat	ion 2 (in	cludes	JSIT Pro	gram 11)	•						
FAA	1.15	0.000 +0.750	1.25	0.000 +1.300	1.25	0.750	1.25	1.275	1.25	0.750	1.25	0.750	
NWS	0.000 +0.125	0	0.000 +0.125	0	0.125	0	0.125	0	0.125	0	0.125	0	
NASA	0.000 +0.125	0.500	0.000 +0.125	0.400	0.125	0.100	0.125	0.100	0.125	0.100	0.125	0	
Industry	0	0	0	0	0	0	0	0	0	0	0	0	
Subtotal	1.15 +0.25	0.500 +0.750	1.25 +0.25	0.400 +1.300	1.5	0.850	1.5	1.375	1.5	0.850	1.5	0.750	
JSAT Recom	mendat	ion 3 (in	cludes	JSIT Pro	grams 1	2-17)							
FAA	14.50 +18.75	5.550 +1.600	13.5 +9.5	4.550 +1.500	21.0	5.450	18.0	5.450	13.0	4.450	13.0	4.450	
NWS	0	0	0	0	0	0	0	0	0	0	0	0	
NASA	5.0	2.100	8.0	2.300	9.0	2.400	10.0	3.100	10.0	3.100	0	0	
Industry	1.5	0	0	0	0	0	0	0	0	0	0	0	
Subtotal	21.00 +18.75	7.650 +1.600	21.5 +9.5	6.850 +1.500	30.0	7.850	28.0	8.550	23.0	7.550	13.0	4.450	
JSAT Recom	mendat	ion 4 (in	cludes	JSIT Pro	gram 18	3)							
FAA	0.5	0.000 +0.150	0.5 +1.0	0.000 +0.300	3.5	0.500	3.5	0.500	3.5	0.500	3.5	0.500	
NWS	0	0	0	0	0	0	0	0	0	0	0	0	
NASA	15.0	5.300	15.0	6.600	15.0	5.900	15.0	6.000	15.0	6.000	7.0	3.000	
Industry	0	2.000	0	2.000	0	2.000	0	7.000	0	7.000	0	1.000	
Subtotal	15.5	7.300 +0.150	15.5 +1.0	8.600 +0.300	18.5	8.400	18.5	13.500	18.5	13.500	10.5	4.500	
JSAT Recom	mendat	ion 5 (in	cludes	JSIT Pro	grams 1	9-20)							
FAA	0.00 +1.50	0.000 +0.100	0.0 +1.0	0	0.5	0	0	0	0	0	0	0	
NWS	0	0	0	0	0	0	0	0	0	0	0	0	
NASA	0	0	0	0	0	0	0	0	0	0	0	0	
Industry	0	0	0	0	0	0	0	0	0	0	0	0	
Subtotal	0.00 +1.50	0.000 +0.100	0.0 +1.0	0	0.5	0	0	0	0	0	0	0	
Total by FY	111.85 +32.20	70.200 +2.830	100.75 +23.45	55.240 +10.245	102.5	52.635	91.45	56.640	86.45	53.415	57.45	37.515	

Program ^{ab}	FY 2000		FY 2001		FY 2002		FY 2003		FY 2004		FY 2005	
	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$
1 ^c	7.0 +6.0	3.700 +1.500	7.0 +6.0	2.400 +6.400	13.0	9.000	13.0	8.000	13.0	6.500	13.0	6.500
2	1.5	0	1.5	0	0	0	0	0	0	0	0	0
3	1.0 +0.5	1.000 +0.500	1.0 +0.5	1.000 +0.500	1.5	1.500	1.5	1.500	1.5	1.500	1.5	1.500
4 ^d	4.3 +0.7	0	4.3 +0.7	0	6.7	1.000	0.7	0	0.7	0	0.7	0
5	5.0	0	5.0	0	0	0	0	0	0	0	0	0
6	2.0	1.440	2.0	1.270	0	0	0	0	0	0	0	0
7	5.1	0	2.0	0	0	0	0	0	0	0	0	0
8	1.5	.000 +.100	1.5	.000 +.050	1.5	.050	1.5	.050	1.5	.050	1.5	.050
9	1.3	0	1.3	0	1.3	0	0	0	0	0	0	0
10 ^e	17.0	34.000	9.0	28.100	9.0	17.100	9.0	17.100	9.0	16.600	9.0	16.600
11	1.15	.000 +.750	1.25	0.000 +1.300	1.25	.750	1.25	1.275	1.25	.750	1.25	.750
12	0.0 +3.5	.000 +.100	0.0 +1.5	0	0	0	0	0	0	0	0	0
13	0.0 +4.0	1.700	0.0 +2.5	0	2.5	0	0	0	0	0	0	0
14	8.0	1.000	6.0	1.600	5.5	1.000	5.0	1.000	0	0	0	0
15	0.0 +5.0	.200 +.800	1.0	.300	1.0	.300	1.0	.300	1.0	.300	1.0	.300
16	6.5 +5.5	2.650 +1.500	6.5 +5.5	2.650 +1.500	12.0	4.150	12.0	4.150	12.0	4.150	12.0	4.150
17	0.00 +0.25	0	0	0	0	0	0	0	0	0	0	0
18	0.5	.000 +.150	0.5 +1.0	.000 +.300	3.5	.500	3.5	.500	3.5	.500	3.5	.500
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0.0 +1.5	.000 +.100	0.0 +1.0	0	.5	0	0	0	0	0	0	0
Total by FY	61.85 +30.95	45.690 +5.630	49.85 +23.70	37.320 +10.110	59.25	35.35	48.45	33.875	43.45	30.35	43.45	30.35

FAA Resource Requirements by JSIT Program

Table Notes:

- a. "+" indicates an additional amount of resources that must be reprogrammed over what was requested on 10/1/99 in either the FY 2000 or FY 2001 budgets.
- b. "Cont\$" is in millions of dollars and includes contractor services, equipment, and any other non-salaries employee (non-FTE) expense.
- c. Program 1 FTEs and Cont\$ include total amount for FAA and NWS, which must be allocated by FAA and NWS Senior Management.
- d. Program 4 totals include FTEs and Cont\$ allocated for Training and Equipment.
- e. Program 10 totals include FTEs and Cont\$ allocated for Short-Term ADDS Access and Long-Term OASIS deployment.

Program ^{ab}	FY 2	2000	FY 2	2001	FY 2	2002	FY 2	2003	FY 2	2004	FY 2	2005
_	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$
1°	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	1.0 +0.5	.750 +.050	1.0 +0.5	.750 +.165	1.5	.915	1.5	.915	1.5	.915	1.5	.915
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	1.0	0	1.0	0	1.0	0	1.0	0	1.0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	.000 +.125	0	.000 +.125	0	.125	0	.125	0	.125	0	.125	0
12	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
Total by FY	2.000 +0.625	0.750 +0.050	2.000 +0.625	0.750 +0.165	2.625	0.915	2.625	0.915	2.625	0.915	1.625	0.915

NWS Resource Requirements by JSIT Program

<u>Table Notes</u>: a. "+" indicates an additional amount of resources that must be reprogrammed over what was requested on 10/1/99 in either the FY 2000 or FY 2001 budgets.

"Cont\$" is in millions of dollars and includes contractor services, equipment, and any b. other non-salaries employee (non-FTE) expense. NWS FTEs and Cont\$ totals for Program 1 are included in FAA Resource

c. Requirements table.

Program ^{ab}	FY 2	2000	FY 2	2001	FY 2	2002	FY 2	2003	FY 2	2004	FY 2	2005
	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$
1	7.0	1.500	7.0	1.700	5.0	1.600	4.0	1.800	4.0	2.000	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	.25	.250	.25	.250	.25	.250	.25	.250	.25	.250	.25	.250
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	6.0	1.440	6.0	1.270	6.0	1.500	6.0	1.600	6.0	1.700	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	.25	.620	.25	.620	.25	.620	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	.000 +.125	.500	.000 +.125	.400	.125	.100	.125	.100	.125	.100	.125	0
12	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	5.00	2.100	8.0	2.300	9.0	2.400	10.0	3.100	10.0	3.100	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0
18	15.0	5.300	15.0	6.600	15.0	5.900	15.0	6.000	15.0	6.000	7.0	3.000
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
Total by FY	33.625 +.125	11.710	36.625 +.125	13.140	35.625	12.370	35.375	12.850	35.375	13.150	7.375	3.250

NASA Resource Requirements by JSIT Program

Table Notes:

"+" indicates an additional amount of resources that must be reprogrammed over what was requested on 10/1/99 in either the FY 2000 or FY 2001 budgets. "Cont\$" is in millions of dollars and includes contractor services, equipment, and any a.

b. other non-salaries employee (non-FTE) expense.

Program ^{ab}	FY 2	2000	FY 2	2001	FY 2	2002	FY 2	2003	FY 2	2004	FY 2	2005
	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$	FTEs	Cont\$
1	0	0	0	0	0	0	0	0	0	0	0	C
2	0 ^c	0 ^c	0 ^c	0 ^c	0	0	0	0	0	0	0	C
3	0	0	0	0	0	0	0	0	0	0	0	(
4	2.0 ^c	0°	1.0 ^c	0°	1.0	0	1.0	0	1.0	0	1.0	C
5	5.0	0	5.0	0	0	0	0	0	0	0	0	C
6	6.0	10.000	6.0	2.000	4.0	2.000	4.0	2.000	4.0	2.000	4.0	2.000
7	0 ^c	0°	0 ^c	0 ^c	0	0	0	0	0	0	0	C
8	0 ^c	0°	0°	0°	0	0	0	0	0	0	0	C
9	0	0	0	0	0	0	0	0	0	0	0	C
10	0	0	0	0	0	0	0	0	0	0	0	C
11	0 ^d	0 ^d	0 ^d	0 ^d	0	0	0	0	0	0	0	C
12	0 ^c	0°	0°	0°	0	0	0	0	0	0	0	(
13	0 ^c	0°	0 ^c	0 ^c	0	0	0	0	0	0	0	(
14	0	0	0	0	0	0	0	0	0	0	0	(
15	0 ^d	0 ^d	0 ^d	0 ^d	0	0	0	0	0	0	0	(
16	0 ^d	0 ^d	0 ^d	0 ^d	0	0	0	0	0	0	0	C
17	1.5°	0 ^c	0 ^c	0 ^c	0	0	0	0	0	0	0	(
18 [°]	0	2.000	0	2.000	0	2.000	0	7.000	0	7.000	0	1.000
19	0 ^c	0°	0 ^c	0 ^c	0	0	0	0	0	0	0	C
20	0 ^c	0°	0 ^c	0 ^c	0	0	0	0	0	0	0	C
Total by FY	14.5	12.000	12.0	4.000	5.0	4.000	5.0	9.000	5.0	9.000	5.0	3.000

Industry Resource Requirements by JSIT Program

Table Notes:

- a. "+" indicates an additional amount of resources that must be reprogrammed over what was requested on 10/1/99 in either the FY 2000 or FY 2001 budgets.
- b. "Cont\$" is in millions of dollars and includes contractor services, equipment, and any other non-salaries employee (non-FTE) expense.
- Nine programs involve Industry publication actions: Programs 2, 4, 7, 8, 12, 13, 17, 19 and 20. There are seven principal GA pilot/operator publications, by AOPA, EAA, HAI, NBAA, NATA, Flying, and Plane and Pilot. Each of these publications will average four articles that address the JSIT programs. Each article costs \$0.015M, for a total of \$0.420M.
- d. Three programs involve Industry training actions: Programs 11, 15 and 16. The JSIT estimates that two training organizations each will produce one seminar covering all three programs, and will conduct the seminars at 200 locations. The total cost of this effort is \$0.830M over two years.
- e. Industry Cont\$ totals for Program 18 include \$10M for NASA cost sharing.

Appendix E

JSAT Interventions by Organization and Program Status

The following GA Weather and CFIT JSAT Interventions were included in the scope of the GA Weather JSIT:

- All Interventions contained in the GA Weather JSAT Final Report except items 1-1b; 5-1 a, b and c; 7-1; 7-2; and 7-3.
- Only Interventions TRN 11 bullet 1; TRN 8 bullet 5; TRN 3 bullets 1, 2, 4, and 5; and MISC 1 from the GA CFIT JSAT Final Report

JSAT Intervention Number	Abbreviated JSAT Intervention Description	Supporting FAA Organizations	Supporting GA Organizations
	SAT Interventions	•	- -
1-1a and c ²	Improve training materials, with updated practical guidance on weather hazard risk assessment, avoidance, and recovery	AFS-800, AFS-400, AFS-600, ATO-300, ARW-200, ASY- 300, NWS	AOPA, EAA, NBAA, HAI
1-2 ²	Improve flight instructor and pilot continuing education programs on weather hazards and decision making	Same as 1-1a and c	Same as 1-1
1-3 ³	Develop a "model" Flight Operations Manual for assessing weather risks and avoiding or coping with weather hazards	Same as 1-1a and c, and AAM-240	Same as 1-1
2-1a and c ²	Improve certification to accelerate the equipage of GA aircraft with low-cost avionics for data-link display of graphical weather information	AFS-400, AFS-800, ACO AK, ARW- 200, AND-520	SAMA, EAA
2-1b ²	Improve certification to accelerate the equipage of GA aircraft with low-cost avionics for data-link display of graphical weather information	AIR-130, ACE-100, AK ACO, AFS-400	SAMA, EAA
2-2 ²	Streamline approval processes to encourage installation of equipment that enables pilots to retain control in IMC and icing	Same as 2-1b, and AFS-400, AK ACO, and ACE-100	SAMA, AOPA
2-3 ²	Increase R&D for on-board systems, such as forward-looking icing and turbulence detectors, which help pilots identify and cope with weather hazards	NASA, ARW-100, AUA-430, AFS-800, AFS-400	EAA, SAMA
3-1a, b, c ²	Produce and make operational graphical weather information products that show how and when a flight can be made safely	NWS AWC, AUA- 430, ARW-100, ARW 200,	SAMA, EAA
3-1f ³	Provide FAA radio Spectrum and funding for automatic weather data collection expanded to include GA aircraft	ARW-100, ASR- 100, AND-520	SAMA, EAA
3-1g ²	Issue generic operational approvals by FAA Flight Standards for use of new weather product	AFS-400	SAMA, EAA
3-2a, b, d and e ²	Improve the PIREP collection and dissemination system to include a common database for controllers, pilots, FSS specialists and dispatchers	ATO-300, ASY- 300, NATTS, NATCA, ARW-200	AOPA ASF, EAA
3-2 c and f ³	Provide FSS Specialists with an ASD and provide a dedicated frequency for PIREPS in each terminal area	ATO-300, ASY-300, NATTS, NATCA, ARW-200, ASR-100.	AOPA ASF, EAA
3-3 a and b ²	Expedite implementation of the Flight Information Service (FIS) program to provide a national, weather data-link system	AND-520, AFS- 400, ARW-200	SAMA, EAA
3-4a ²	Improve the FSS system, including DUATS, FSS equipment and weather briefings. Initial and recurrent FSS Specialist training	ATO-300, ARW- 200, ASY-300, NATTS, NWS, ATX- 100	AOPA ASF, HAI, NBAA, EAA
3-4b ³	Improve FSS equipment, linking FSS weather displays and pilot home computer, providing advanced graphics for Specialists, and enabling FSS to get airline dispatch data	AT0-300, ARW- 100, ARW-300, ARU-300	AOPA ASF, HAI
3-4c ³	Determine the adequacy of FSS services	ATO- 300, NAATS, AFS-400, ARW- 200, AAM-510	AOPS ASF, HAI
3-4d ²	Improve DUATS	ATO-300, NAATS, AFS-400, ARW- 200, AAM-510	AOPA ASF, HAI, NBAA, EAA
4-1a and c ²	Improve ATC weather information knowledge and dissemination, and develop new procedures for handling of aircraft that are not weather-tolerant. Educate controllers on the need to provide special	NATCA, ATO-100, ATO-300, AFS-400, AFS-800, ASY-300	EAA, AOPA, HAI

	handling to small aircraft and enable controllers to provide special handing of small aircraft that are not weather-tolerant		
4-1b ²	Enable controllers to provide better information on weather hazard areas to pilots. Provide controllers with better tools, enhance ATC displays of weather, and improve training and information transfer between controllers and CWSUs	ARU-100, ATO- 400, ATO-300, NWS, ATX, ATO- 100, ASY-300, NAATS.	SAMA, EAA
4-2 ²	Implement systems to provide graphical display of traffic information for use when ATC frequency must be abandoned to gather weather information	NATCA, AND-520, AIR-130, AFS-400	SAMA, EAA
5-1d ²	Develop enhanced operational procedures for mountain operations. List recommended weather information sources and safety criteria	AFS-400, AFS-800	SAMA, EAA
5-1e ²	Place AWOS or remote TV cameras in critical mountain passes	AK ACO, AUA-430, ARW-300	SAMA, EAA
5-2a ³	Exploit new CNS systems in mountainous areas to improve ability of pilot to fly safely below freezing levels or cloud bases	AND-520, AFS- 400, AK ACO, AIR- 130, NASA GRS	HAI, SAMA
5-2b ³	Provide lower minimum en route altitudes using GPS-defined routes	AFS-400, AIR-130	HAI, SAMA
6-1 ³	Encourage pilots to make hazardous weather reports by providing immunity from enforcement	AGC, AFS-800, AFS 200, AFS 400, ASY 300	NBAA, SAMA, AOPA
6-2 ³	Define use of "VFR not recommended" and "known and forecast icing" in ways that are operationally useful to pilots	Same as 6-1, and NAATS, ATO-300, ARW- 200	Same as 6-1
7-4 ²	Expedite implementation of precision GPS approaches at smaller airports and heliports	AFS-400, AVN, AND-720, AND- 520, AFS-800	HAI, NBAA

JSAT Conclusion K ³	Improved Data on GA Weather Accidents	ASY-300, AFS-800, AAM-510, AAI	AOPA, HAI						
GA CFIT JSA	GA CFIT JSAT Interventions								
GA CFIT JSAT TRN bullet 1	The weather dissemination system needs to give accurate WX information	Included in GA Weather JSAT Intervention 3-4							
GA CFIT JSAT TRN 8 bullet 5	Dispense menu driven mountain weather and passes information routed through the 1-800- wxbrief	Included in GA Weather JSAT Intervention 5-1							
GA CFIT JSAT MISC 1	Improve the quality and substance of weather briefs	Included in GA Weather JSAT Intervention 3-4							
GA CFIT JSAT TRN bullets 1, 2, 4 and 5	Expand the pilot personal minimums program. Provide a structured approach to initial and recurrent pilot training specifically pertaining to CFIT accidents. Increase pilot understanding of the terminology used in weather reports. Provide regionally specific training to capture terrain or weather related issues	Included in GA Weather JSAT Intervention 1-3							

Table Footnotes:

The following categories were created to describe the status of programs related to the JSAT interventions:

¹ An existing program fully addresses the intervention, and the only action required is to keep it on-performance, on-schedule, and on-cost.

² An existing program partially addresses the intervention, and the program must be modified to fully address the intervention, move schedule ahead, adding a deliverable, etc.

³No program exists to address the intervention, and one must be developed.

⁴ No action should be taken because the cost or time to achieve the intervention is so high compared to the likely benefits, that the intervention is deemed unfeasible for this reason. (This category may be determined only after a category 2 or 3 IP is developed).

Appendix F

FSS GA Renaissance Cross Reference

Pilot Weather Briefing and Service Requirements

Bold Items Are Incorporated In GA Weather JSIT Report

I. Policy

A. JSIT Items

- Enable service providers (ATC, including FSS specialists and FISDL providers) to have access to airline PIREPs from their dispatch centers.
- Develop clarification or substantial modification of VNR guidance, incorporating "how and when" to go safely guidance, to avoid overly conservative application and resulting lack of use, and replace with telling pilots how and when the destination can be reached safely.
- Revise enforcement policies to avoid discouraging PIREPS.
- Take traffic counts for appropriate staffing.
- Provide decision support for pilots to determine how and when to make the flight safely.
- Provide information to help pilots, not for legal protection of the FAA.
- B. Summit Items

- Establish a new and different philosophy of customer focus, with a higher level of personal service, and an integrated partnership of users.
- Revise FSS procedures handbook (7110.10) to reflect this philosophy change.
- Examine supplementing CWSU staff with FSS briefers in ARTCC and TRACON.
- Perform recurrent surveys to identify current performance, future needs, and design new systems based on user information, including focus groups to develop products and services.
- Develop new programs in a lead region before national implementation.
- Encourage VFR flight plan filing by enhancing its value to the user.
- Evaluate how customer service and cost-benefit can be enhanced by either further consolidation or expansion of FSSs.
- De-emphasize the legal motive for briefing elements, do not include information just for CYA reasons, e.g., delete EFAS notice, international flight notice.
- Provide adequate staff to handle the demand for services and for training.
- Examine possible positive attributes of NAVCANADA system.
- Market FSS services to users through outreach efforts, including advertising.

II. Services

A. JSIT Items

1. Improve DUATS:

- Conduct a customer satisfaction survey aimed at developing specific improvements.
- Provide a plain language NOTAM translator in DUATS.
- Eliminate non-relevant data from report.
- Revise OASIS requirement document to permit pilot use over modem and additional
- weather graphics.
- Incorporate a weather risk assessment model.

2. Improve FSS services generally.

- Input results of this Conference into Safer Skies.
- Conduct a follow up Conference to assess progress in 2002.

3. Improve access to flight information.

- Implement FIS data link system (with weather, NOTAMS, SUA status).
- B. Summit Items
- Provide plain language information and simplify products and services.
- Provide more interpretation, including short-term forecasting, with enhanced briefer capability in difficult weather conditions, such as a meteorologist-level briefer.
- Improve the use of local area knowledge; examine tools for acquiring, retaining, and disseminating this information.
- Provide pilots with alternatives for "mission success", flight routes, altitudes, or times for a safe flight that would avoid weather hazard areas.
- Replace the NOTAM system; evaluate the new DOD NOTAM system (or others) as a replacement for the current system.
- Evaluate Remote Airport Information Service for the services and operational benefits it would provide, with a focus on safety.
- Provide a site-specific 800# for each AFSS, in addition to the national 800# WXBRIEF, that would not be off-loaded to another facility (this resolves the cell phone issue, and supports the local area knowledge recommendation).
- Improve business practices by automatically providing daily weather packages to major users (e.g., flight schools, FBOs, air taxi operators).
- Provide "pre-emptive" in-flight calls to pilots to alert them to hazards and changes; SUA/ISE recommendation below (providing FSS with position knowledge based on the Aircraft Situation Display -ASD) supports this recommendation by providing VFR flight monitoring for these weather warnings.
- Examine replacement of DF program with SUA/ISE or other program.
- Provide single-point service for pilots to avoid need to communicate with other US government offices (e.g., customs, DOD facilities).

- Provide services geared for a new generation of pilot, with a wider range of technical capability, and with varying service needs, and spend the most briefing time on the most important items for that flight.
- Examine re-sectorization of FSS areas based on traffic flow.
- Provide real-time status of SUA occupancy.
- Provide easier way to get in-flight weather from FSS for IFR pilots.
- Enable electronic flight plan filing for other than DUATS.
- Examine providing other services, e.g., fuel availability at an airport, etc.
- Provide timely and efficient international weather briefings.
- Evaluate how to improve weather briefing services for rotorcraft.

III. Training

A. JSIT Items

- 1. Encourage more controller involvement in the PIREP system by creating simple methods for them to enter, retrieve, and disseminate PIREPs through training:
- FSS specialists on entry of data from controllers; CWSU staff to manually input PIREPs benefiting GA in to MWSCR.
- TRACON controllers who get PIREPs of widespread wx hazards to communicate to others in TRACON, then to pilots.
- NWS to request PIREPs where needed to confirm forecast.

2. Improve FSS/Flight Watch specialist recurrent training, and supervisor quality control methods:

- To ensure that pilots are advised of effective times, locations easy for pilots to identify, severity, movement, of weather hazard areas relative to planned route of flight, and suggest alternative routes, altitudes, and times to avoid weather hazard areas.
- Using computer based tutorials, reinforces by Air Traffic Bulletins, to provide more weather knowledge, especially local climatology, and more knowledge of the limitations of typical pilot/airplane combinations.
- Providing an additional position of "training manager".
- Update and require PWB course, every two years.
- Provide EFAS training to all FSS specialists and supervisors.
- Provide training in customer service to all specialists and supervisors.
- Revise evaluation checklist to include PWB/customer service as a "special emphasis" item.
- Increase the number of tape talks to one per quarter, with appropriate additional staff.

3. Improve communications with GA pilots by:

- Providing ground school training to all non-pilot FSS specialists and supervisors.
- Having a FSS representative at all pilot safety seminars.
- Develop a video for use by student pilots on FSS services.
- 4. Improve FSS quality control, by tasking NWS to develop and staff a QCO.
- B. Summit Items
- Re-establish recurrent training program to include customer focus, meteorology (forecasting and nowcasting) weather interpretation, and increased aeronautical knowledge.
- **IV. Equipment**
- A. JSIT Items
- 1. Encourage more controller involvement in the PIREP system by creating simple methods for them to enter retrieve, and disseminate PIREPs by providing:

- A short-term "automation" system, using a direct line to fast file for recording the PIREP, with FSS entry into data base.
- A long-term automation program of PIREP entry and access with virtually no increase in workload, such as one-key entry.
- 2. Provide all FSS specialists with:
- Aircraft situational displays (SUA/ISE) showing location of aircraft receiving in-flight briefing relative to weather graphics, and incorporate into OASIS.
- Communications/displays for accessing NWS ADDS and other graphics, and FISDL products (to have the same information as pilots), and incorporate into OASIS.
- 3. Provide en route, TRACON and tower controllers with equipment and products to display weather hazard graphics.
- 4. Improve area dissemination of PIREPs to pilots by providing one FSS VHF frequency nationwide for a PIREP summary broadcast, transcribed by a FSS specialist.
- B. Summit Items
- Provide a shared (between all FAA facilities) data base containing weather, flight data, flight and briefing history, and NOTAMS.
- Improve data communication system for higher data rates to ensure adequate capacity for new systems, such as OASIS.
- Provide capability to split flight watch positions among RCOs.

V. Weather Products

A. JSIT Items

- Provide operational weather graphics that show current and forecast weather hazard areas from instrument conditions, thunderstorms, icing, and turbulence, and are highly accurate, precise, and timely.
- Make these available for pre-flight and in-flight use by FSS/Flight Watch Specialists, controllers, dispatchers, traffic planners, and pilots.
- Provide for their transmission by phone, voice radio, computer modem, and data link.
- Use the National Weather Service's Aviation Digital Data Service to disseminate the products.
- Fully fund the FAA aviation weather research program.

B. Summit Items

- Improve accuracy and precision of weather products to increase pilot confidence in the information compared to the weather they encounter.
- Enable use of internet by FSS specialists to access weather products.
- Provide the same or similar weather products to all ATC users and pilots.
- Increase priority (including funding) of aviation weather at NWS.

Industry Efforts

A. JSIT Items

- Improve number and quality of PIREPs, by educating pilots on need and best practice methods of reporting.
- Improve pilot understanding of FSS services, by encouraging student pilots visit FSS, logbook signature.

B. Summit Items

 Educate pilots on information to provide briefer to improve pre-flight briefing, with information understand pilot/aircraft weather capability, and knowledge from other weather sources.

Appendix G

Implementation Plan Summary 3-1d and f

I. JSAT Intervention Summary

A. Description

Intervention 3-1: Produce and make operational graphical weather information products that show how and when a flight can be made safely

d) Accelerate FAA funding for the flight verification program to confirm the validity of new experimental weather products

f) Provide FAA radio spectrum and funding for automatic weather data collection expanded to include GA aircraft

Author(s): Ron Colantonio, NASA/AvSP; Jim Henderson, AWC; Paul Fiduccia, SAMA

B. Explanation

A GA electronic pilot reporting (E-PIREPs) system will utilize instrumented aircraft in flight as weather observing stations that report in situ conditions to users of that information. These users include weather forecasters, weather briefers, air traffic controllers, and pilots. The information will be relayed to the ground as a digital data stream for collection and dissemination. A GA E-PIREPs system will permit 1) validation of currently available and soon to be available weather products; 2) improved weather forecasting (aviation and non-aviation) accuracy by using the E-PIREPs data as improved forecast model inputs and 3) increased pilot situational awareness.

Currently, Aircraft Communications Addressing And Reporting System (ACARS) equipped transport airplanes are sending temperature and wind data to the ground for collection and dissemination to the National Weather Service (NWS) via the Meteorological Data Collection And Reporting System (MDCARS). Data are collected during climb, cruise and descent phases of flight. Due to the nature of jet transport operations, the majority of data are reported for high altitude cruise. This program is being expanded to regional carriers, with Sky West, Comair, Air Wisconsin, Atlantic Coast and will soon be providing EPIRPES of icing (or no icing). Most of the moisture and weather are at altitudes of 18,000 feet and below, well below jet-transport cruise altitudes. Therefore, there is a desire to gain more meteorological observations of conditions below 18,000 feet, especially water vapor. This intervention plan proposes that GA airplanes be equipped to report these data.

II. JSIT Implementation Summary

A. Action(s)

1. FAA

- a. Expand the current transport E-PIREP program to include the GA aircraft, which contribute most to forecast model schedule, have high-utilization, and fly under 18,000 feet MSL operations (i.e., Part 135 cargo (check haulers), Part 135 scheduled carriers, Part 121 regional carriers, Part 141 flight school aircraft used for cross country flights).
- b. Include this activity under the current MDCRS program management.
- c. Define GA E-PIREP system/architecture including number and location of participating aircraft, avionics requirements, and means of communicating data to NWS and reports from the EPIREPs to FSS, and equipage and user requirements.
- d. Reserve additional E-PIREPs frequency spectrum.
- e. Define incentives for the aircraft owner to consider E-PIREP capability in a viaible business case.
- f. Develop and fund a system to equip aircraft with necessary avionics, including STCs for the most common aircraft types involved, and the purchase, installation, and maintenance of airborne equipment.
- g. Develop and deploy necessary ground infrastructure, possibly using current data link systems and ground communications system (e.g. the FISDL service providers and ARINC).

2. Industry

- a. Assist in developing user incentives.
- b. Manufacturers develop avionics.

3. NWS

- a. Expand the current transport E-PIREP program to include GA aircraft by being prepared to accept more data into models.
- b. Assist in defining GA E-PIREP weather model input requirements, e.g., types of sensor accuracy.
- c. Assist in defining GA E-PIREPs architecture for proper data dissemination into weather models.
- d. Determine total US economic benefit from acquisition of the GA data through the improvement in model accuracy.

4. NASA

a. Continue funding GA E-PIREP Industry cooperative agreements and sensor development for the next five years.

B. Resources

FAA	FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005
Change Type	100%C/	100%C/	100%C/	100%C/	100%C/	100%C/
	50%M	50%M	50%M	50%M	50%M	100%M
FTEs	1/.5	1/.5	1/.5	1/.5	1/.5	.5/.5
Contract \$	1M/500K	1M/500K	1M/500K	1M/500K	1M/500K	500K/500K

Offices: ARW-100, AUA-400, AND-300; includes transport humidity sensor program (\$2.9M FY0-04)

NASA	FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005
Change Type	100%C	100%C	100%C	100%	100%C	N/A
FTEs	.25/0	.25/0	.25/0	.25/0	.25/0	N/A
Contract \$	\$250/0	\$250/0	\$250/0	\$250/0	\$250/0	N/A

Organizations: NASA AvSP/Weather Accident Prevention Project

NWS	FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005
Change Type	100%C/	100%C	100%C	100%C	100%C	100%C
	10%M	/25%M	/25%M	/25%M	/25%M	/100%M
FTEs	1/.5	1/.5	1/.5	1/.5	1/.5	.5/.5
Contract \$	\$750/50K	\$750/165K	750/165K	750/165K	750/165K	165/165K

Note: Includes shared costs with FAA for current transport ARINC/MDCRS for data collection; includes transport humidity sensor program (\$2.1M FY0-04). Additional funding for GA data handling costs.

Industry	FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005
Change Type	100%C	100%C/15	100%C/	100%C/	100%C/	100%C/
		%M	15%M	15%M	15%M	15%M
FTEs	2/0	2/.5	2/.5	2/.5	2/.5	1/.5
Contract \$	\$2M/0K	2M/330K	2M/330K	2M/330K	2M/330K	500K/330K

Note: Includes estimated cost to airlines per message (\$.02 to \$.10), industry cost sharing on NASA Cooperative Agreements, and the transport humidity sensor program (\$8.3M FY0-04).

See "IP Summary Key" for Explanation of Tables

Appendix H

Intervention Program Plan 3-1d and f

Intervention 3-1: Produce and make operational graphical weather information products that show how and when a flight can be made safely

- **d.** Accelerate FAA funding for the flight verification program to confirm the validity of new experimental weather products.
- f. Provide FAA radio spectrum and funding for automatic weather data collection expanded to include GA aircraft.
- Author(s): Ron Colantonio, NASA/AVSP; Richard Young, ARW-100; Jim Henderson, AWC; Paul Fiduccia, SAMA

I. Current NWS, FAA, NASA, Research and Industry Programs Addressing Intervention

Program Name	E-PIREPS
Lead Organization	FAA, NASA
Performing Organization(s)	FAA:ARW-100/AUA-400/AND-300, NASA AvSP, NWS, NCAR
Program Manager, Organization	FAA ARW-100 Manager; NASA AvSP Weather Accident Prevention Manager
Mission Needs Statement: Name; Number	Implement a flight verification program/E-PIREPS for the General Aviation community.
Sponsoring Organizations	NASA, FAA, General Aviation Coalition, Private Industry, NWS
Program Products	E-PIREPS used to validate and verify new aviation hazard graphical products.
Degree to which Program achieves Weather JSIT Intervention	Addresses the JSIT intervention of establishing a flight verification program for GA aircraft to validate new experimental weather products.
Relations to Other Interventions	Relates to FAA FIS Policy, NASA AWIN effort

A. Joint FAA/Industry Program Data

B. Program Description: Statement of Work by NASA, FAA, NWS, and Industry

In January, 1999, the National Aviation Weather Program Council issued the National Aviation Weather Initiatives documents. This plan, using inputs from throughout the aviation industry, presented a small number of achievable high impact initiatives including one that stated:

"Expand and institutionalize the generation, dissemination, and use of automated **PIREPs** to the full spectrum of the aviation community, including general aviation."

Electronic pilot reporting (E-PIREP) will utilize instrumented aircraft in flight as weather observing stations that report in situ conditions to users of that information. These users include weather forecasters, weather briefers, air traffic controllers, and pilots. The information will be relayed to the ground as a digital data stream for collection and dissemination. Electronic Pilot Reporting needs to be developed using a systems approach to ensure a commercially viable implementation. Three elements have to be considered for an E-PIREP system: (1) coverage, (2) capability, and (3) cost.

Currently, Aircraft Communications Addressing And Reporting System (ACARS) equipped transport airplanes are sending temperature and wind data to the ground for collection and dissemination to the National Weather Service (NWS) via the Meteorological Data Collection And

Reporting System (MDCARS). This program is being expanded to regional carriers with Sky West, Comair, Air Wisconsin and Atlantic Coast to provide E-PIREPS for "icing" or "no icing". Data are collected during climb, cruise and descent phases of flight. A humidity sensor FAA/NOAA MDCARS project is also currently funded for ACARS equipped transport, however, most of the moisture and weather are at altitudes of 18,000 feet and below, well below jet transport cruise altitudes. Due to the nature of jet transport operations, the majority of data are reported for high altitude cruise. Therefore, there is a desire to gain more meteorological observations of conditions below 18,000 feet. It has been proposed that general aviation (GA) airplanes be equipped to report these data.

The benefits of a GA E-PIREPS clearly extend beyond the aviation community. The added data obtained for a GA E-PIREPS system will improve and validate non-aviation weather forecasting skills that effect other modes of transportation, agricultural communities, DoD operations, enhanced public awareness of weather, etc. Such spin-offs for a GA E-PIREP system may provide future R&D and implementation leveraging opportunities. Currently the FAA/NOAA humidity sensor project for transports will cost FAA, NOAA and industry approximately \$14M of investment. The life cycle cost benefit for such an investment is estimated to be \$217M just based on replacing the soundings made by 70 weather stations across the United States. This does not include the aviation and non-aviation impacts from improved inflight icing and ceiling and visibility forecasts.

NASA's Aviation Safety Program (AvSP) has taken a role in this initiative under its AWIN (Aviation Weather Information) project. NASA has a cooperative research agreement with NavRadio to develop a "General Aviation Oriented Electronic Pilot Report Generation and Datalink System" along with team members Aspen Mountain Airlines, Atmospheric Systems, Avidyne, Avrotec, D-TEK, EAA, FAA CAMI, Inertia Technology, NCAR, RAA, Seagull Technology, Unisys Weather Information Services, State of Minnesota/DOT Office of Aeronautics, and State of Wisconsin/DOT Division of Aeronautics. This work will create a nearterm, practical E-PIREP system based on next-generation sensor, packaging, and datalink technology. The end result of this research will be 30 production airborne equipment packages and two operational ground stations for in-flight evaluation of a low-cost sensor package bundled with VHF datalink capabilities. The sensor system for the E-PIREP GA system includes an airspeed inlet, optical icing detector, integral GPS antenna and air data sensor for the measuring of air temperature, relative humidity, heading, GPS positioning, airspeed, vertical accelerations, icing, and pressure.

Phase II of the NASA cooperative research agreement on GA E-PIREPS will be up to a 3 year effort and will continue to develop useable, operational E-PIREP weather products and implement the data collection to larger scales. It will potentially involve participation of regional airline users as well as integration evaluation of E-PIREP system into the FIS.

NASA will also help develop airborne sensors to cover requirements for several aviation weather hazards. Requirements for icing and turbulence will be considered, and other aviation weather hazards and atmospheric measurables addressed will include ceiling & visibility, convective weather, winds, wind shear, wake vortices, moisture/humidity, temperature, precipitation type (rain/freezing rain/sleet/snow/hail), and volcanic ash. Some of these sensors could potentially be integrated into an E-PIREP system.

C. **Program Outcome:** Measurable improvement of forecast modeling by including airborne equipment to collect more and better airborne electronic weather data from GA aircraft and regional airline aircraft operating at low altitudes. There is also the opportunity to data link back into the cockpit processed, graphical near-real time weather depictions based in large part on the E-PIREP data.

D. Program Outputs: 1.

Affordable, certifiable sensor package suite/avionics bundled with a VHF

- datalink for GA A/C
- **C.** Prototype demonstration of a E-PIREP system for GA A/C
- D. Government and Industry Program Milestones and Dates (Who; What; When): Specifically targeted to GA and not Transport E-PIREP Systems

Government Items

FY 2000	FY 2001	FY 2002
		NASA 3Q: Initiate
NASA 1Q: Complete NavRadio Phase I	NASA 2Q: Report complete on initial flight/ground test	flight/ground demonstrations
Cooperative Research	series to evaluate enhanced	of national AWIN/Enhance
Agreement on "General	weather products/concepts	weather product capability
Aviation Oriented Electronic	and sensors	would product capability
Pilot Reporting (E-PIREP)		
Generation and Data-Link	NASA 3Q: Weather product	
System"	definition and sensor	
	selection for national	
NASA 2Q: Identify and Initiate	prototype demonstrations	
Phase II 3-year Cooperative		
Research Agreement on E-	NASA 4Q: Delivery of	
PIREPS	simulation software and	
NAGA 60. Describes the	documentation for	
NASA 2Q: Report on the	atmospheric models and sensors for selected weather	
identification and specification of weather information and	hazards algorithms and	
sensor measurables	sensors.	
requirements		
NASA 3Q: Initial atmospheric		
models and sensor simulation		
for selected technologies and		
preliminary weather hazard		
algorithms delivered.		
NASA 4Q: Initiate		
flight/ground test series to		
evaluate enhanced weather		
products/concepts and		
sensors.		

F. Government and Industry Resources

Fiscal Year	Staff FTEs by Office and Function	Contract \$ by Function	Industry Resources
FY 2000	NASA: .25	NASA CRA: \$.220M; NASA Sensor Development Reflected in 3-1a	50% cost-sharing on NASA CRAs
FY 2001	NASA: .25	NASA CRA: \$.220M; NASA Sensor Development Reflected in 3-1a	50% cost-sharing on NASA CRAs
FY 2002	NASA: .25	NASA CRA: \$.220M: NASA Sensor Development Reflected in 3-1a	50% cost-sharing on NASA CRAs

II. Modification of Current Program Plan

A. Description of Modification:

Before equipping GA airplanes with E-PIREPS capability, its cost and benefits need to be studied. Weather observations are needed on a regular basis if users are to be able to depend upon the availability of the resulting enhanced reporting and forecasting capabilities. Thus, the question of which aircraft to equip from among the 192,000 active general aviation aircraft needs to be answered. The answer to this question depends upon an understanding of the airspace that needs to be sampled and the frequency with which it needs to be sampled, i.e. the coverage that the equipped airplanes would provide. As a group, the E-PIREP-equipped aircraft should provide observations spanning the entire United States at altitudes of 18,000 feet and below; have availability seven days a week both day and night in both VMC and IMC; and throughout all four seasons. An airplane that is operated for flight training in day VMC would be of limited use, as would be an airplane that is operated sporadically or that is not operated in northern states during the winter. IMC-capable aircraft that are operated over defined routes on a regular basis appear to be the best candidates for E-PIREPS equipage. This seems to point one towards the regional commuter airlines and package carriers.

Once the aircraft that provide the needed coverage have been identified, an acceptable cost of this capability needs to be established. Cost of data collection, messaging, processing and dissemination need to be established. The cost of installation, approval, upkeep, periodic calibration, and replacement need to be considered. The incentives for aircraft owners to equip their aircraft for E-PIREPS need to be weighed against the cost involved. Finally, the need for incentives to implement and operate a system of electronic pilot reporting should be addressed. It is not unreasonable to envision the operator of an E-PIREP-equipped aircraft selling the meteorological observations to the users. In defining the requirements for a GA E-PIREP system the following questions need to be answered:

- 1. What information is desired from the aircraft?
- 2. What airplanes could provide the spatial and temporal distribution of observations needed?
- 3. What sensors are available to make these measurements?
- 4. How will sensors be mounted on aircraft?
- 5. How will data be transmitted to the ground?
- 6. How will data be collected on the ground?
- 7. To whom will data be sent and in what format and how often?
- 8. What use will be made of these observations?
- 9. How often will sensors need to be serviced/calibrated?
- 10. What will be the cost of the sensors and data transmissions?
- 11. What incentives will be needed for operators to participate?
- 12. What are the projected improvements in forecasting?
- 13. What information is desired from the aircraft?

B. Revised Deliverables:

- 1. GA E-PIREPS System Architecture and User Requirements
- 2. GA E-PIREPS frequency allocation or equivalent defined
- 3. Aircraft owner/industry incentives defined/developed
- 4. GA E-PIREP infrastructure operational

C. Additional Government and Industry Milestones and Dates (Changes from current plan):

FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005
ARW-	AND-300:	AUA-	AUA-	AUA-	AUA-
100/NWS:	Evaluate E-	400/ARW-	400/ARW-	400/ARW-	400/ARW-
Develop E-	PIREP data	100: Initiate	100/NWS:	100/NWS:	100/NWS:
PIREP	link	GA E-PIREP	Develop and	Develop and	Develop and
architect and	requirement;	infrastructure	maintain GA	maintain GA	maintain GA
user			E-PIREP	E-PIREP	E-PIREP
requirements	AND-300:	AUA-	Infrastructure	Infrastructure	Infrastructure
	Select E-	400/ARW-			
ARW-100: E-	PIREP data	100/NWS:			
PIREP Cost	link(s)	Integrate E-			
Benefit		PIREP data			
(aviation and	Industry:	into FIS and			

non-aviation) Report	Prototype low-cost E- PIREP	improved NWC/AWC weather		
ARW-100: E- PIREP Aircraft Owner Incentive Report	avionics	products.		

D. Additional Government and Industry Resources (Beyond existing program resources)

Fiscal Year	Staff FTEs by Office and Function	Contract \$ by Function	Industry Resources
FY00	ARW-100: .5	ARW-100: \$.250M E-PIREPs Architect/User Requirements Study; \$.150M E- PIREP Cost Benefit Analysis; \$100K E- PIREP Incentive Study	
	NWS: .5	NWS: \$.050M Weather Model Requirements Study	
FY01	AND-300: .10	AND-300: \$.150M E-PIREP data-link studies	Industry: \$.330M (estimated) weather data message cost/avionics
	ARW-100: .3 AUA-400: .1	ARW-100: \$.350M Additional infrastructure/ sensors suite costs/ data collection	
	NWS: .5 Industry: .5/year	NWS: \$.165M Additional data collection cost shared with the FAA	
FY02-05	ARW-100: .3/year AUA-400: .1/year	ARW-100: \$.500M/year: infrastructure/ sensors suite/data collection	Industry: \$.330M/year (estimated) weather data message cost/avionics
	NWS: .5/year Industry: .5/year	NWS: \$.165M/year Additional data collection cost shared with the FAA	

E. FAA Budget Reprogramming: Additional funding required for concept and user incentives definitions, additional infrastructure, sensor suite and installations costs, and data collection of approximately \$500K/year through FY-2004. This is based on the current transport ACARS/MDCRS government cost of processing downlinked data with supporting infrastructure.

III. New Program Plan: n/a

IV. Chain of FAA and Industry managers in agreement with above

- A. FAA: ARW/AUA/AND approval
- B. NASA: Level II Project Manager, Weather Accident Prevention approval
- C. NWC: Director AWC approval Director NCEP approval Director Office of Meteorology approval Deputy Director of NWS briefed Director NWS - TBD
- V. Other issues: As noted in Section II A.

VI. Statement of effectiveness and feasibility of intervention:

Primary Benefits

- 1. Regulatory mandates for equipage are not necessary to derive sufficient benefits to justify the investment, however, incentives must be provided for sufficient aircraft operators to participate.
- 2. Improved quality and timeliness of hazardous weather condition advisories for aircraft
- 3. Improved aviation weather modeling by NCAR and NWS
- 4. Improved non-aviation weather modeling
- 5. Improved regional airline safety information for both dispatch and in-flight users
- 6. Enhanced pre-flight weather briefing and hazardous weather annunciation

Secondary Benefits

- 1. National Aviation System capacity/efficiency improvements
 - a. Increased information to pilots enroute for early route diversion. This helps ATC handle pile-ups or system "clogs" where poor conditions mandate holding patterns or IFR approaches.
 - b. Terminal flight in VFR- helps avoid system congestion where IFR approach not necessarily needed.
 - c. Avoid "follow-the-leader" through suspected clear spots or passages through line of storms- helps with congestion and ATC workload when "leader" choose poor route or weather rapidly changes.
 - d. Benefits ALL class aircraft in the NAS by providing comprehensive nextgeneration modeling, forecasting, and current weather scenario depiction. Voice/Datalink Communication Spectrum Improvements
- 1.

1.

- a. Because of E-PIREP datalink system usage, less reliance on and use of analog FDD, FlightWatch, and ATC frequencies- Pilots will help efficiencies within the system just by using the datalink and freeing up analog spectrum (PIREPS and generic weather reporting)
- b. Increased efficiency by datalink usage vs. analog voice usage fueled by operators' choice
 - Increased efficiencies for pilots
- a. Better flight-route decision making tools may cause fewer weather delays and help avoid congested IFR holding and approach bottle-necks
- b. Increased weather cognizance can increase pilot ability to make safe decisions

VI. Status of Current Planned FAA/Industry Project Implementation Compared to Recommended Intervention

- A. **Program Performance:** Current FAA program does not address this intervention, although it provides an infrastructure.
- **B. Program Schedule:** Current program (ARINC/MDCRS) is 20% of needed program, mainly lacking concept definition, downlink infrastructure (i.e. new VHF frequencies) and equipage incentives to expand the program to regional and general aviation participation.
- **C. Program Cost:** Current program is 10% of needed program, mainly lacking funding for initial investment in infrastructure depending on solution, and incentives to equip.

VIII. Relationship to Current Aviation Community Initiatives.

Related to National Aviation Weather Initiative

IX. Performance Goals & Indicators for Outcomes/Outputs

Accident Reduction: Goal: Reduce fatal GA weather accident Indicator: Number of fatal GA weather accidents of this type drops.

X. Plan and Execution Requirements

- **A.** FAA, NWS, NASA and Industry must commit adequate levels of staffing and funding support to accomplish its actions on-performance and on-schedule.
- **B.** Regional Airlines and the GA community must commit to adequate levels of participation, and perhaps partial financial support.

XI. Risk Description

- A. Lack of incentives for the aircraft owner to consider E-PIREP capability in a visible business case.
- **B.** Delay of FAA committing a dedicated frequency for GA E-PIREPS which could delay bundling E-PIREP package with the quickly emerging FIS service.
- **C.** Delay of FAA issuance of certification and operational guidelines

XII. Risk Mitigation Plan

NASA AvSP research project plans must continue to be closely coordinated with related FAA, NWS and Industry efforts to ensure success in development of the GA E-PIREPS

XIII. Summary of Recommendation

FAA

- Expand the current transport E-PIREP program to include GA aircraft which contribute most to the forecast model schedule, have high-utilization and fly under 18,000 MSL operations, i.e., Part 135 cargo (check haulers), Part 135 scheduled carriers, Part 121 regional carriers, Part 141 flight school aircraft used cross country.
- Include this activity under the current MDCRS program management.

- Define GA E-PIREP system/architecture including number and location of participating aircraft, avionics requirements, and means of communicating data to NWS and reports from the EPIREPS to FSS, and equipage and user requirements.
- Reserve additional E-PIREPS frequency spectrum.
- Define incentives for the aircraft owner to consider E-PIREP capability in a viable business case.
- Develop and fund a system to equip aircraft with necessary avionics, including STCs for the most common aircraft types involved, and the purchase, installation, and maintenance of airborne equipment.
- Develop and deploy necessary ground infrastructure, possibly using current data link systems and ground communications system (e.g. the FISDL service providers and ARINC).

Industry

- Assist in developing user incentives.
- Manufacturers develop avionics.

NWS

- Expand the current transport E-PIREP program to include GA aircraft by being prepared to accept more data into models.
- Assist in defining GA E-PIREP weather model input requirements, e.g., types of sensor accuracy.
- Assist in defining GA E-PIREPS architecture for proper data dissemination into weather models.
- Determine total US economic benefit from acquisition of the GA data through the improvement in model accuracy.

NASA

• Continue funding GA E-PIREPS industry cooperative efforts and sensor development as currently planned in 5-year program

A. FY 2000

FAA

- 1. Additional Deliverable or Acceleration: E-PIREPS Requirements Defined
- **2.** Additional FTEs Required: .5
- **3.** Additional Contract \$ Required: \$.500M

NWS

- 1. Additional Deliverable or Acceleration: E-PIREPS Weather Model Requirements Defined
- 2. Additional FTEs Required: .5
- 3. Additional Contract \$ Required: \$.050M
- B. FY 2001-2005

FAA

- 1. Additional Deliverable or Acceleration: E-PIREPS Infrastructure/Sensor Suite/Installation/Data Collection
- 2. Additional FTEs Required: .5/year
- 3. Additional Contract \$ Required: \$.500M/year

NWS

- 1. Additional Deliverable or Acceleration: Shared data collection cost
- **2.** Additional FTEs Required: .5
- 3. Additional Contract \$ Required: \$.165M

Industry

- 1. Additional Deliverable or Acceleration: Data-messaging cost
- 2. Additional FTEs Required: .5
- 3. Additional Contract \$ Required: \$.330M (estimated)

Appendix I

Federal Aviation Administration

Safer Skies: A Focused Safety Agenda

General Aviation

Weather Joint Safety Analysis Team

Final Report

April 1999

Will be available on CDROM pending JSC report revisions

Appendix J. JSIT Team Members and Statement of Team Consensus

Statement: The undersigned Members of the General Aviation Weather Joint Safety Implementation Team (GA Weather JSIT), as individuals and as representatives of their organizations, have reached consensus that the implementations contained in this Report would be highly effective and feasible, have a substantial benefit/cost ratio, and appropriately address the interventions recommended in the GA Weather JSAT report.

Team Members

Joint Steering Committee Liaison Member			
Henry Armstrong Manager, Rotorcraft Directorate FAA ASW-100 Fort Worth, TX			
Team Co-Chairs			
Paul Fiduccia President Small Aircraft Manufacturers Association Alexandria, VA	Fred Gibbs Manager Weather Standards FAA ARW-200 Washington, DC Dr. Frances Sherertz Deputy Director		
	Aviation Weather FAA ARW-2 Washington, DC		

Team Members			
Monica Bradford Air Traffic Control Specialist Flight Service Division FAA ATP-300 Washington DC	Kevin Bridges General Engineer Avionics Systems Branch FAA AIR-130 Washington DC		
Douglas Carr Manager, Domestic Operations National Business Aviation Association Washington, DC	Stephen Chenault Aviation Safety Inspector Aviation Weather FAA AFS-400 Washington DC		
James Chudy Aerospace Engineer Aircraft Certification Office Anchorage, AK	Ron Colantonio Manager, Weather Accident Prevention Project Aviation Safety Program NASA Cleveland OH		
Susan Gardner Aviation Safety Inspector (GA/AC/Ops) General Aviation and Commercial Division, Certification Branch FAA AFS-840 Washington, DC	Ruth Grasel Aviation Safety Inspector (GA/Ops) General Aviation and Commercial Division, Flight Operations Branch FAA AFS-820 Washington, DC		
George Greene Aviation Research FAA AAR Langley, VA	Dorothy Haldeman Manager Aviation Weather National Weather Service NOAA Suitland, MD		
Hooper Harris Aviation Safety Inspector (GA/Ops) Flight Technologies and Procedures Division, Flight Operations Branch, FAA AFS-410 Washington, DC	James Henderson Deputy Director Aviation Weather Center National Weather Service NOAA Kansas City, MO		

Lynda Hobbs Air Traffic Control Specialist Flight Service Division FAA ATP-300 Washington DC	Pete Hwoschinsky General Aviation/Vertical Flight Technical Manager FAA AND-520 Washington, DC
Daphne Jefferson Branch Manager Meteorological Support Branch Flight Service Division FAA ATP-310 Washington, DC	Kurt Joseph Research Psychologist Civil Aeromedical Institute FAA AAM-500 Oklahoma City, OK
Robert J. Kopecky Program Manager, Airman Testing Standards Branch FAA AFS-630 Oklahoma City, OK	Bruce Landsberg Executive Director, AOPA Air Safety Foundation Frederick, MD
Mike Lenz Aviation Safety Program Analyst Office of System Safety FAA ASY-300 Washington, DC	Joe Mooney Program Analyst Office of Accident Investigation FAA AAI-220 Washington, DC
Don Nellis* Office of Spectrum Management FAA ASR-100 Washington, DC	Rick Peri National Air Transport Association Alexandria, VA
Dan Petlowany Air Traffic Control Specialist Air Traffic Requirements Service NAATS Liaison Washington, DC	Walter Pike President, National Association of Air Traffic Specialists FAA Air Traffic Control Specialist Wheaton, MD
Glenn Rizner Vice President, Operations Helicopter Association International Alexandria, VA	David A. Sankey Product Lead Weather Sensors and Aviation Weather Research Product Team AUA-430 Washington, DC

James Sheets	Nan Shellabarger*
Aviation Weather Research	Office of Policy and Plans
GSC AUA/TAC	FAA APO
Washington, DC	Washington, DC
Cal Smith Air Traffic Control Specialist Air Traffic System Requirements Service, FAA ARW Representative, National Air Traffic Controllers Association Washington, DC	John Steuernagle Vice President Operations AOPA Air Safety Foundation Frederick, MD
Steve Teager	James Tegtmeier*
Aerospace Engineer	Office of Chief Counsel
FAA AND-520	FAA AGC-300
Washington, DC	Washington, DC
Richard A. Weiss Washington Representative Experimental Aircraft Association Oshkosh, WI	Richard Young Air Traffic Control Specialist Aviation Weather Policy FAA ARW-100 Washington, DC

Note: Persons denoted with an asterisk did not participate in the Implementation Plan evaluation sessions, but did provide important information to the JSIT.